Студопедия
МОТОСАФАРИ и МОТОТУРЫ АФРИКА !!!


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

Типическая выборка




В составе генеральной совокупности с различным уровнем изучаемого

признака более равномерное представительство в выборочной совокупности различных типов обеспечивает типическая (расслоенная, районированная или стратифицированная) выборка.

При типической выборке неоднородная генеральная совокупность подразделяется на более однородные в отношении изучаемого признака группы (типы, районы). По каждой группе определяются объем в генеральной совокупности ( ) и число подлежащих наблюдению единиц в выборочной совокупности ( ). Отбор обследуемых единиц из генеральной совокупности в выборочную производится в каждой группе при помощи повторного либо бесповторного случайного отбора .

Общее число единиц выборочной совокупности (n) распределяется между группами пропорционально численности групп в составе генеральной совокупности (N). Такой отбор называется пропорциональным. Таким образом,

Формулы для расчета ошибок типический выборки приведены в таблице 2.

В таблице 2 - средняя из внутригрупповых дисперсий в выборочной совокупности

Таблица 2 – Формулы ошибок типической выборки

  Способ отбора единиц
повторный бесповторный
Средняя ошибка для определения средней при пропорциональном размещении единиц.   Средняя ошибка для определения доли при пропорциональном размещении единиц    

Величина ошибки типической выборки зависит от величины внутригрупповых дисперсий. Из правила сложения дисперсий следует, что ошибка типической случайной выборки меньше, чем ошибка простой случайной выборки.

Предельная ошибка типической выборки:

Приведем пример расчетов генеральных характеристик при типическом отборе.

Операция дискования при обработке почвы проводится в ОАО «Маяк» на трех тракторах. Для определения процента некачественно выполненного дискования проведена расслоенная (типическая) 10%- ая выборка. На первом тракторе было обработано 170 гектаров, на втором – 200 гектаров, на третьем – 180 гектаров. Количество некачественно обработанной площади в выборочной совокупности по первому трактору – 2, по второму - 3, по третьему – 3 гектара.

Определить: 1) интервалы, в которых с вероятностью 0,95 заключен процент некачественно обработанной площади в общей площади, подвергшейся дискованию; 2) вероятность того, что процент брака для всей обработанной площади отличается от полученного по выборке не более, чем на 1%.

Решение:

  1. Общий объем генеральный совокупности

Численность выборки

Численность выборки по тракторам ,

т.е. для первого – 17(га)

для второго – 20(га)




для третьего – 18(га)

Доверительный интервал процента некачественно обработанной площади для всей совокупности (5500га)

или 0,2%

При вероятности p = 0,95 t = 1,96 (см. таблицу функции Лапласа)

14,5-0,94 ≤ P ≤ 14,5+0,94

13,56% ≤ P ≤ 15,44%

С вероятностью 0,95 можно утверждать, что процент некачественно обработанной площади в общей площади, продискованной тракторами, будет находиться в пределах от 13,56% до 15,44%

2. Известно, что =1% или 0,01

, следовательно,

( см. n.1)

Если t = 5, то ей соответствует вероятность р=0,999 (см. таблицу функции Лапласа).

Таким образом, вероятность того, что процент брака для всей обработанной площади отличается от полученного по выборке не более, чем на 1%, очень высока и достигает 0,999 (т.е. в 99,9% из 100%)





Дата добавления: 2015-10-16; просмотров: 1804; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10050 - | 7508 - или читать все...

Читайте также:

 

18.208.186.19 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.003 сек.