Закон Ома для однородного участка цепи в интегральной и дифференциальной формах

Немецкий физик Г. Ом экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на концах проводника: I = U/R, где R — электрическое сопротивление проводника. Это уравнение выражает закон Ома для участка цепи (не содержащего источника тока): сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротив­лению проводника. Формула позволяет установить единицу сопротивления — ом (Ом): 1 Ом — сопротивление такого проводника, в котором при напряжении 1 В течет постоянный ток 1 А. Величина

G = 1/R называется электрической проводимостью проводника. Единица проводимости — сименс (См): 1 См — проводимость участка электрической цепи сопротивлением 1 Ом.

Сопротивление проводников зависит от его размеров и формы, а также от матери­ала, из которого проводник изготовлен. Для однородного линейного проводника сопротивление R прямо пропорционально его длине l и обратно пропорционально площади его поперечного сечения S:

R = ρl/S, где r — коэффициент пропорциональности, характеризующий материал проводника и называемый удельным электрическим сопротивлением. Единица удельного элект­рического сопротивления — ом×метр (Ом×м). Наименьшим удельным сопротивлением обладают серебро (1,6×10–8 Ом×м) и медь (1,7×10–8 Ом×м). На практике наряду с медными применяются алюминиевые провода.

Закон Ома можно представить в дифференциальной форме. Подставив выражение для сопротивления в закон Ома, получим

I/S = U/ρl, где величина, обратная удельному сопротивлению, γ = 1/ρ называется удельной электрической проводимостью вещества проводника. Ее едини­ца — сименс на метр (См/м). Учитывая, что U / l = Е — напряженность электрического поля в проводнике, I/S = j — плотность тока, формулу можно записать в виде

j= γE. Так как в изотропном проводнике носители тока в каждой точке движутся в направле­нии вектора Е, то направления j и Е совпадают.

Последняя формула — закон Ома в дифференциальном форме, связывающий плотность тока в любой точке внутри проводника с напряженностью электрического поля в этой же точке. Это соотношение справедливо и для переменных полей.

Опыт показывает, что в первом приближении изменение удельного сопротивления, а значит и сопротивления, с температурой описывается линейным законом:

ρ = ρ0(1+αt), R = R0(1+αt), где r и r 0, R и R 0 соответственно удельные сопротивления и сопротивления провод­ника при t и 0°С, aтемпературный коэффициент сопротивления, для чистых металлов (при не очень низких температурах) близкий к 1/273 К–1. Следовательно, температур­ная зависимость сопротивления может быть представлена в виде R = R0αT

где Т — термодинамическая температура.

Впоследствии было обнаружено, что сопротивление многих металлов (например, Al, Pb, Zn и др.) и их сплавов при очень низких температурах TK (0,14—20 К), называемых критическими, характерных для каждого вещества, скачко­образно уменьшается до нуля, т. е. металл становится абсолютным провод­ником. Явление сверхпроводимости объясняется на основе квантовой теории. Практическое использование сверхпроводящих материалов (в об­мотках сверхпроводящих магнитов, в системах памяти ЭВМ и др.) затруднено из-за их низких критических температур. В настоящее время обнаружены и активно исследуют­ся керамические материалы, обладающие сверхпроводимостью при температуре выше 100 К.



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: