Адаптация

То, что мы воспринимаем из нашего окружения, зависит от возможностей наших рецепторных органов, которые накладывают свои ограничения на восприятие той или другой конфигурации воздействия. Так, оптическая система глаза фокусирует на сетчатку ограниченный диапазон электромагнитных волн; звуковые волны оказывают давление на жидкость в улитке уха; разного рода деформации кожи возбуждают свободные или специализированные нервные окончания в соматической системе и т. д. Эти формы энергетических изменений взаимодействуют «собственной активностью рецепторов и вызывают ее изменения, которые являются достаточно надежными, чтобы организм мог их идентифицировать как результат внешних воздействий.

Воспользуемся еще раз простой моделью протекания речевого акта, описанного в гл. I. Там участвовали две основные переменные: устойчивое состояние и дискретные переменные. Эта модель была применена к функции мозга, сейчас мы используем ее для сенсорного механизма. Заменим состояние постоянного напряжения голосовой связки постоянным распределением различных видов энергии по рецепторным поверхностям, дискретные колебания воздуха — дискретными нейронными разрядами в форме нервных импульсов. Короче говоря, предположим, что то, что происходит в органе чувств, совсем не отличается от того, что происходит в нервной системе, и что нейрофизиология сенсорных процессов может служить миниатюрной моделью ориентировочного рефлекса и процесса привыкания.

Всем известен процесс адаптации: ощущение при погружении в слишком горячую ванну и осознание спустя несколько минут, что для полного удовольствия следовало бы добавить еще теплой воды; исчезновение ощущения давления на кожу, ожидание

в течение нескольких минут после входа в темный зал кинотеатра,, прежде чем мы что-либо увидим и будем способны найти свободное место. Можно привести много примеров сенсорной адаптации. Наиболее яркий из них тоже парадоксален и был получен в экспериментах, при которых проецируемый на сетчатку образ стабилизировался с помощью зеркал и линз (Ditchburn and Ginsborg, 1952; Riggs, Rattliff, Cornsweet and Comsweet, 1953).

Удивительно, что наши глаза находятся в постоянном движении — даже тогда, когда мы фиксируем точку. Эти небольшие, подобные тремору движения глаз можно зарегистрировать. Такие движения у некоторых людей настолько велики, что заметны другим, но — и в этом-то и состоит парадокс — человек с такими усиленными движениями глаз не знает о них до тех пор, пока не обратит на них внимание, когда смотрит на себя в зеркало (что обычно заставляет его обратиться к врачу, который, если он знаком с такой аномалией, успокаивает своего пациента, говоря, что это не опасно). Движения глаз препятствует тому, чтобы каждый из рецепторных элементов в течение какого-то отрезка времени возбуждался бы одним и тем же соотношением света и темноты, конечно, за исключением таких ситуаций, как плотный туман, когда свет теряет форму и функция зрения сводится к различению яркости. Чтобы изучить последствия нарушений таких движений глаз, на склере, белой части глазного яблока, не обладающей чувствительностью, укрепляют зеркало. Изображение проецируется на зеркало, отражается через призму на гладкую поверхность экрана, на которую смотрит наблюдатель. Призма корректирует отклонения рассматриваемого объекта, соответствующие отклонениям глазного яблока. Благодаря этому изображение, проецируемое на поверхность, всегда падает на одно и то же место сетчатки и образ стабилизируется (рис. Ш-3).

Стабилизированное изображение быстро становится незаметным. Зрительный прибор за несколько секунд так адаптируется, что изображение не может оставаться видимым — оно исчезает, адаптация завершена. Сходный опыт можно провести и в кожно-кинестетической системе: положите предмет на руку и некоторое время подержите его. Скоро ощущение наличия объекта исчезает.

Если бы не было такого механизма, организм подвергался бы непрерывной бомбардировке раздражителей разной длительности и интенсивности и это сделало бы его неспособным к тонкому различению. Фактически возможность зрительного различения, несмотря на изменение фонового освещения в диапазоне от 10 миллиардов до единицы, составляет одно из тех противоречий, которые вызывают большой поток исследований. В данном случае исследования адаптации сетчатки привели к открытию соответствующих нейронных механизмов. Это противоречие

получило объяснение в концепции, согласно которой адаптация сетчатки целиком объясняется выцветанием и регенерацией фоточувствительного пигмента, содержащегося в рецепторах сетчатки (Hecht, 1934). Однако в последнее время стали накапливаться данные, говорящие о том, что для объяснения процесса адаптации необходимы и нефотохимические факторы я что эти факторы являются основой для осуществления фотохимических процессов (см. Rushton, в обзоре Dowling, 1967).

Главным инструментом в этих и< следованиях служит большой электрод, который помещают па внешней стороне глаза.

Рис. Ш-3. Благодаря тому, что стимул, прежде чем воздействовать на сетчатку, первоначально отражается от зеркала, укрепленного на склере и перемещающегося вместе с движениями глаз, последние могут быть компенсированы с такой точностью, что изображение раздражителя на сетчатке становится стабилизированным (см. Riggs et al, 1953).

Этот электрод записывает изменения потенциалов, генерируемых всей сетчаткой, в виде электроретинограммы. При соответствующих методах анализа получают такие же четкие ответы, как и тогда, когда используют микроэлектродную технику.

Коротко говоря, сетчатка млекопитающего состоит из нескольких слоев: рецепторный слой образован клетками, имеющими •форму палочек и (или) колбочек, в которых имеются фоточувствительные химические пигменты; реагирующий первичный слой состоит из клеток, в которых процессы распространяются торизонтально и связывают друг с другом множество соседних клеток сетчатки; биполярный слой состоит из клеток, связывающих один или несколько рецепторов с ганглиозными клетками, являющимися началом выхода импульсов из сетчатки к мозгу <рис. Ш-4).

Рис. Ш-4. Схема строения сетчатки приматов, показывающая синапсы между различными типами клеток, наблюдаемые с помощью электронного микроскопа на серийных срезах. Обратите внимание на контакты между рецепторами, на широко распространенные связи горизонтальных и ама-криновых клеток и вертикальное расположение биполяров. Вздутые центральные окончания биполярных клеток формируют так называемые диад-ные синапсы (в рамке) с гаяглиозной клеткой и одновременно с амакри-новой клеткой. П — палочка; К — колбочка; кб — карликовый биполяр; по — палочковый биполяр; плб — плоский €иполяр: г — горизонтальная клетка; а — амакриновая клетка; кг — карликовая ганглиозная клетка; д — диадный синапс; дг — диффузная ганглиозная клетка; н — ножка. В прямоугольной рамке вверху справа показаны детали типичною диадного синапса (Horridge, 1968; Dowling and Boycott, 1966).

Электроретинограмма включает в себя два компонента: малую а- и большую e-волну; а-волна, по-видимому, генерируется более периферической частью сетчатки, чем e-волна. Это обнаруживается при наложении на зрительный нерв зажима. В результате этой операции нарушается кровообращение в сетчатке, за исключением тех сосудов, которые питают рецепторы. В таком препарате остаются только а-волны.

Сходную процедуру можно применить и для разрушения ганглиозных клеток, образующих самый глубокий слой сетчатки; рассечение зрительного нерва вблизи его начала вызовет дегенерацию большинства тел порождающих импульсы ганглиозных клеток. Электроретинограмма в результате этой процедуры, по-видимому, не нарушается; фактически адаптация в таких препаратах остается нормальной. Таким образом, этот самый глубокий слой сетчатки не может быть источником ни а- ни, e-волн. Это -значит, что генераторами e-волны являются средние слои сетчатки.

Процесс адаптации для а- и e-волн различен. Адаптация а- волны не отражает хода психофизической адаптации, и поэтому мы не будем рассматривать ее здесь подробно. Напротив, адаптация e-волны происходит параллельно психофизической адаптации и ее механизм является для нас центральным.

Ряд остроумных экспериментов принес подтверждение концепции, согласно которой адаптация является функцией не отдельных клеток сетчатки, а целой группы нейронов, составляющих нейронную сеть сетчатки. Типичный эксперимент показывает, что чувствительность к свету остается одной и той же, когда на сетчатку проецируется рисунок в виде чередования темных и светлых полос или когда она освещается светом той же средней интенсивности, но равномерно распределяемым по ловерхности. Этот тип исследований находит логическое завершение в эксперименте, в котором было показано, что освещение одной части зрительного рецептивного поля одиночной ганглиозной клетки (определяемого с помощью микроэлектрода) вызывает процесс адаптации в другой его части.

Множество данных говорит о том, что биполярные клетки и клетки, осуществляющие взаимодействие в среднем слое сетчатки, являются генераторами e-волны и местом психофизической адаптации. Некоторые исследователи (например, Fuortes, Hodgkin, 1964; Rushton, 1963; Dowling, 1967) считают, что нейронная адаптация возникает в результате действия механизма обратной связи, когда сигнал с одной ступени посылается вазад на предыдущую ступень и таким образом снижает ее •чувствительность. Недавно Дж. Даулинг и Б. Бойкотт (1965)' показали с помощью электронного микроскопа, что контакты биполярной, амакриновой и ганглиозной клеток могут функционировать точно таким же способом. Были открыты реципрокные

синапсы, они делают возможным движение возбуждения назад", от амакриновой клетки к биполярной, от которой амакриновая клетка ранее получила возбуждение. Подразумевается, что эта обратная связь является отрицательной, что создает систему сер-

Р и с. Ш-5. Зарисовка нейрона в зрительной системе мозга (латеральное коленчатое тело), иллюстрирующая синаптические контакты. Обратите внимание, что, как и в сетчатке, пузырьки, содержащие химический возбудитель, находятся иногда на дальней стороне, иногда — на ближней стороне синаптической щели, показывая, что нейрон посылает сигналы и воспринимает их (обозначено направлением стрелок). Эта двойная направленность связей (диадные синапсы) делает возможной обратную связь-

(Ralston, 1971).

вомеханизма, но это утверждение нуждается в более прямом доказательстве (рис. Ш-5).

УСИЛЕНИЕ КОНТРАСТА

Затухание нейронных ответов само по себе не может объяснить, каким образом формируется «нейронная модель» памяти,, с которой сравниваются последующие воздействия. Как мы уже говорили, полученные при изучении поведения данные свидетельствуют о том, что даже при малейшем изменении сложного

стимула, к которому организм обнаружил привыкание, возникает растормаживание. Необходима определенная преобразующая организация нейронных явлений. Как же осуществляется такая организация?

Чтобы ответить на этот вопрос, рассмотрим одно из тех противоречий, которыми так богата наука о мозге. В данном случае это противоречие было замечено венским физиком Эрнстом Махом. Мах отметил, что, когда человеку предъявляется более или менее неравномерно освещенная плоскость, воспринимаемые различия в яркости увеличиваются. В то время как физическое изменение, замеренное с помощью прибора, можно описать как

восприятие изменения выглядит более похожим на (см. рис. III-6).

Другими словами, кажется, что плоскость имеет в местах изменения освещения темные и светлые «полосы», известные под именем «полос Маха». Можно предположить, что психофизическое несоответствие объясняется тем, что зрительный аппарат (вероятно, сетчатка) функционирует, чтобы дифференцировать, в математическом смысле, интенсивность света в соответствии с тем, как свет распределяется по ее поверхности. Согласно этому объяснению, восприятие зрительного контраста обусловлено, до-видимому, нейронным механизмом, выполняющим функцию дифференцирования. Математическая модель была улучшена и модернизирована при более детальном анализе психофизических порогов различения. Этими исследованиями были подтверждены также правомерность подхода Маха, а также некоторые элементы его решения этой проблемы. Вместе с тем они представили и нейрофизиологические данные о механизме, ответственном за зрительный контраст (а на основе экстраполяции — и за контур).

Путем вживления микроэлектрода в нервное волокно, берущее начало от ганглиозной клетки, экспериментатор может создать карту зрительного поля, — вернее, находящейся перед глазами области, — в которой преходящее появление света будет вызывать изменение в частоте импульсных разрядов этой ганглиозной клетки. Такая карта известна как зрительное рецептивное поле (см. рис. 1П-7). Выбирая различные клетки, можно получить ряд карт: большинство карт более или менее круглые-

по форме, но некоторые из них звездообразные, или линейные, или имеют длинный край, отделяющий часть рецептивного поля, в котором свет вызывает этот эффект, от части, где эффект отсутствует. Вообще можно выделить два класса зрительных рецептивных полей: рецептивные поля, у которых свет в начале тормозит разряды ганглиозных клеток, и рецептивные поля, реагирующие на свет усилением спайковых разрядов нейрона. Далее, каждое из первично реагирующих полей частично или

полностью окружено другой областью, освещение которой вызывает у клетки ответ с противоположным знаком. Таким образом, большинство ганглиозных клеток можно разделить на единицы с оп- эффектом или о//-эффектом в центре; ore-центральные единицы характеризуются, как правило, наличием тормозного окружения; о//-центральные единицы часто окружены зоной, реагирующей возрастанием частоты разрядов. Эти карты зрительных рецептивных полей ганглиозных клеток указывают на функциональную организацию сетчатки. Очевидно, такие записи являются не просто отражением активности отдельных рецепторов. Ганглиозные клетки — это нейроны третьего порядка, которые активируются любым большим числом рецепторов, с которыми они анатомически связаны. Рецептивные поля в большой степени соответствуют размерам фоторецепторов, и соседние поля значительно перекрывают друг друга. Таким образом, любая отдельная область рецеп-торной мозаики не связана исключительно с какой-нибудь одной особой ганглиозной клеткой (Ratliff, 1965, р. 173—174).

Наличие в рецептивном поле зоны с эффектом, противоположным по знаку центральному эффекту, означает, что антагонистические возбуждающие и тормозные влияния организованы таким образом, что стимуляция рецепторов одного участка снижает эффект возбуждения, получаемого ганглиозной клеткой от соседних стимулированных клеток. Другими словами, возбуждение какого-то участка сетчатки продуцирует торможение вокруг этого участка. Этот процесс «периферического», или «латерального», торможения непосредственно наблюдается в глазе подковообразного краба Limulus (рис. III-8). У этого животного элементы

Рис. Ш-6. Вращение диска с изображенными на них картами (левая колонка) формирует стимулы, физическая и субъективная характеристика которых показана в средней и правой колонках (см. «Psychology Today», 1970).

сетчатки пространственно отделены друг от друга — каждый элемент образует свою собственную, заключенную в капсулу единицу, названную омматидием. Поэтому при микроэлектродном исследовании волокон, выходящих из сетчатки, можно отдельно' осветить каждый омматидий. Освещение одного из таких оммати-диев будет вызывать возбуждение, если запись осуществляется

Рис. Ш-7. Точечная карта сетчатки, в пределах которой световое пятно вызывает ответ определенного нейрона латерального коленчатого тела в мозгу обезьяны (Spinelli and Pribram, 1967).

от волокон, чье рецептивное поле включает этот омматидий. Когда свет перемещается на соседний омматидий, микроэлектрод регистрирует торможение. Полученные таким образом карты сходны с картами ганглиозных клеток млекопитающих, построенных в. результате сканирования рецепторов в пределах их рецептивных полей методом короткой вспышки света.

Этот процесс «периферического», или «латерального», торможения не ограничивается зрительной системой. Сходную функциональную организацию имеют кохлеарный механизм слуха и рецепторы кожи (Bekesy, 1967). В центральной нервной системе аналогичным образом реагируют клетки коры головного мозга и коры мозжечка.

Короче говоря, латеральное торможение является одной нехарактерных особенностей нейронных сетей — особенно тех, кото-

0 12 3

Время (сек)

Тис. III-8. Одновременное кратковременное развитие возбуждения и торможения у двух соседних рецепторных единиц в латеральном глазе Limu-lus'a. Одна рецепторная единица (черные кружки) постоянно освещалась в течение всего периода, показанного на графике. Освещение другой единицы (белые кружки) также оставалось на одном постоянном уровне, кроме отрезка времени от 0 до 2 сек, когда ее освещение резко возрастало и оставалось на новом постоянном уровне. Заметный кратковременный рост возбуждения у одной рецепторной единицы сопровождается большими кратковременными тормозными эффектами у соседней, постоянно освещенной единицы. Резкое падение частоты вызывается тормозным эффектом, возникающим в результате большого кратковременного возбуждения. Во время постоянного освещения тормозный эффект еще присутствует, но менее заметен. Наконец, затухание частоты ответа у элемента, у которого уровень возбуждения был снижен, сопровождается заметным высвобождением от торможения (Ratliff, 1965).

рые организованы в плоские слои. В этих слоях располагается несколько уровней обработки информации о сигналу.

Какие же свойства этих нейронных сетей объясняют латеральное торможение? Было дано несколько объяснений латеральному торможению, и они не являются взаимно исключающими; точное ^математическое) описание и оценку каждого из них читатель

может найти в обзоре Рэтлиффа (1965, гл. 3). Нуждается в •объяснении прежде всего возникновение латерального торможения, его явная зависимость от расстояния до центра возбуждения, очевидность взаимодействия между возбуждением и торможением. Наиболее правдоподобное объяснение состоит в том, что разветвления каждого рецептора образуют тормозные связи с соседними рецепторами или, что более вероятно, они возбуждают

Входы (раздражители)

Выходы (импульсы)

Рис. Ш-9. Схема рецепторного слоя и слоя взаимодействия (горизонтальные клетки) в сетчатке. Вертикальные стрелки указывают направление передачи сигнала, горизонтальные — тормозные взаимодействия (Ratliff, 1965).

тормозные нейроны — например, амакриновые и горизонтальные клетки сетчатки, обширные разветвления дендритов которых и отсутствие у них аксона делают их идеальными для выполнения этих функций (рис. Ш-9). Обнаружено, что такие не имеющие аксона дендритные сети в сетчатке (Svaetichin, 1967) и в каком-нибудь другом месте нервной системы (например, в мозжечке) выполняют точно такую же функцию. Действительно, недавние эксперименты (Werblin and Dowling, 1969) с использованием внутриклеточной регистрации показали, что горизонтальные клетки функционируют исключительно посредством гиперполяризации, то есть путем генерации тормозных медленных потенциалов. (Фактически от элементов сетчатки, расположенных на периферии слоя ганглиозных клеток, можно зарегистрировать только медленные потенциалы, а не нервные импульсы.) А возникновение торможения за счет дендритных сплетений, в которых медленные потенциалы генерируются в ответ на

воздействия входных волокон, выявляя рисунок продуцируемых волновых форм, по существу, ведет к созданию эффектов интерференции, которые в их простейшей форме и образуют периферическое торможение.

В заключение следует отметить, что сенсорный механизм почти постоянно изменяет свою реакцию на входное воздействие, используя для этого два процесса: усиление контраста и адаптацию. Анатомические связи механизма делают вероятным реципрокное функционирование этих процессов; чем больше ослабевают ответы нейрона в ходе адаптации, тем меньшее тормозное

Рис. Ш-10. Реципрокные отношения усиления контраста и адаптации.

влияние оказывает он на соседние нейроны, вызывающие усиление контраста (рис. Ш-10).

Таким образом, прогрессивно растущее торможение, затухание возбуждения в нервной системе препятствует развитию длительного разряда, делает возможным последовательное сравнение входных структур возбуждения и до некоторой степени усиливает временный контраст путем простого механизма вычитания. Далее, тормозные взаимодействия между соседними нейронами препятствуют распространению, или иррадиации, возбуждения по рецепторным сетям — тормозные взаимодействия усиливают четкость, очерченность пространственных узоров. Таким образом, проведение информации о контрасте на системах входа осуществляется более надежно, чем если бы для этой цели использовались предварительно не обработанные данные об энергетических изменениях, как таковых, воздействующих на входные пути нервной системы.

Эти явления адаптации и усиления контраста свойственны не только рецепторам. Взаимодействия, ведущие к ослаблению и

торможению ответа, имеют место во всех системах входных путей, и особенно в коре головного мозга (Brooks and Asanuma, 1965). Это подтверждает ранее высказанное предположение, что наблюдаемые в рецепторах процессы адаптации и контрастирования могут служить миниатюрными моделями психологических процессов ориентировочного рефлекса и привыкания.

В следующей главе мы покажем, как эти элементарные процессы вместе с другими, имеющими еще более короткую продолжительность, приобретают такую важную роль и пронизывает все виды деятельности организма.

РЕЗЮМЕ

Процессы мозга, характеризующиеся средней продолжительностью, являются в значительной мере результатом развития у нейронов процессов затухания и торможения. При однообразной стимуляции у многих групп нейронов наблюдается ослабление активности (адаптация и привыкание) и они, таким образом, становятся чувствительными к новизне (ориентировочная реакция). Во многих частях нервной системы локальное возбуждение нейронов тормозит активность окружающих нейронов и тем самым усиливает контраст между возбужденной и невозбужденной тканями. Процесс затухания у нейронов, видимо, развивается в системе генерации потенциала, который посредством деполяризации порождает нервные импульсы; тормозные же взаимодействия зависят от гиперполяризаций, возникающих в соединительной сети.

Глава IV

КОДЫ И ИХ ПРЕОБРАЗОВАНИЯ

ЧТО ТАКОЕ КОД?

Как можно охарактеризовать формы тех временных нейро-электрических конфигураций (и отношений между ними), которые делают возможным существование самих механизмов кратковременной памяти, механизмов, на какие мы опираемся, когда имеем дело, например, с конструкцией немецкого предложения с глаголом на конце? Изучение условий, влияющих на человеческую память, продемонстрировало несколько пренебрежительное отношение к проблеме структур; если что-либо запоминается,, то это объяснялось в значительной мере формой материала и контекстом, в котором он предъявлялся. Мы же обращаемся к проблеме замещения одной конфигурации другой, которое возникает в результате определенных операций в нервной системе. На техническом языке — это проблема преобразований или функций передачи, что делает возможным кодирование и перекодирование.

Операции кодирования постоянно имеют место в нервной системе. Физическая энергия воспринимается рецепторами и трансформируется в нервные импульсы. Эти импульсы в свою очередь достигают синаптических сетей, где дискретные сигналы кодируются в микроструктуры медленных потенциалов. Для того чтобы кодирование было эффективным и могло быть использовано мозгом, необходимо наличие декодирующей операции, благодаря которой было бы возможно восстановление нервных импульсов и сохранение, таким образом, предварительно закодированной информации.

Для описания операций кодирования, происходящих в нервной системе, можно использовать два класса функций передачи.

Одни преобразования допускают достаточно простой расчет соответствия между кодами. Такой расчет делает возможным декодирование закодированной формы, и наоборот. Благодаря

однозначному соответствию между цифрами кода между ними устанавливается нечто вроде обратимости, вторичный функциональный изоморфизм.

Второй класс функций передачи целиком неизоморфный и условный. Преобразования в этом классе необратимы, пока нет ключа для дешифровки такого кода.

Обратимые трансформации возникают в физико-оптических системах, в звуковых преобразователях и, как мы покажем, в закодированных нейронных конфигурациях микроструктуры медленных потенциалов мозга. Необратимые преобразования имеют место в обычных языках, состоящих из условных алфавитных комбинаций, в азбуке Морзе, в телефонной и телевизионной передаче сигналов и т. п. В нервной системе, как будет подробно рассмотрено в последующих главах, имеют место необратимые преобразования, если происходит процесс абстрагирования, например такой, как детекция признака.

Для чего мозгу нужно так много замещающих схем, так много операций кодирования и перекодирования? Ведь любое преобразование грозит утратой точности. Почему же это свойство присуще всей нервной системе? Какую пользу дает перекодирование? Должно быть, ответ на этот вопрос состоит в том, что перекодирование повышает эффективность нервной системы.

Это перекодирование отнюдь не такая тривиальная операция, как та, с которой я столкнулся при использовании компьютера общего типа. Последним можно управлять только с помощью языка, который он понимает: пространственной или временной последовательностью «on» и «off», «да» и «нет», «вверх» и «вниз», системой имеющихся у него переключателей. Если имеется 12 таких переключателей, то мы должны запомнить размещение каждого из них для осуществления операции, которую мы хотим получить от компьютера. Следовательно, передача сообщения принимает вид серий

ABB AAA BAA BBB ААВ ABA AAB ABB ABA BBB ABA ABA и т. д.

Таким образом, стоящая перед оператором компьютера задача является в значительной мере задачей на запоминание длинного перечня позиций включения и выключения, рядов «двоичных» цифр.

• 011 000 100 111 001 010 001 011 010 111 010 010

Программисты должны были быстро овладеть этим сложным способом управления их инструментом: они подразделяли 12 переключателей на наборы по три и обозначали включение (В) целым числом, геометрически увеличивающимся справа налево..

Рис. IV-1. Представление двоичных логических элементов: «и», «или», «не и», «не или». Входные сигналы 0 или 1 поступают в схему из двоичных элементов слева, где логически комбинируются для создания выходного сигнала справа. «Таблица соответствий» под каждой схемой перечисляет все возможные логические операции, которые могут еще быть выполнены. Элементы «не и» и «не или» образуются комбинациями элемента «не» с «и» и «или» (Evans,

Computer Logic and Memory, 1966).

ДЕСЯТИЧНАЯ ДВОИЧНАЯ

  Аз А2 А< Ао
О        
         
о 2        
         
         
    f    
         
         
         
         

Рис. IV-2. Превращение двоичной системы в десятичную с помощью схемы, состоящей из 4 элементов «не» и «и». Таблица соответствий справа содержит двоичный эквивалент для десятичных цифр (от 0 до 9). Схема демонстрирует принцип декодирования двоичных чисел на примере декодирования числа 2. Сигнал на каждом из пронумерованных выходов будет равен 0, пока на все входы подается 1. В этом примере единица подается на вход А! третьего справа логического элемента «и», обозначенного цифрой 2. Таким образом двоичное число 0010 декодируется в число 2 десятичной системы (см. Evans, 1966).

Рис. IV-З. Схема сетчатки приматов, показывающая типы нейронов и их синантические связи Метод Гольдзди. (Polyak, 1941).

Таким образом, в каждой триаде включение указывает на 4—2—1. Когда одновременно включаются два или три переключателя, то они представляют сумму целых чисел. Так,

0 означает AAA

1 означает ААВ

2 означает ABA

3 означает ABB

4 означает ВАА

5 означает ВАВ

6 означает ВВА

7 означает ВВВ

и любую последовательность из 12 включений и выключений можно описать и запомнить в виде четырех цифр, например представленные ранее последовательности превращаются в 3047,

1213, 2722. Это преобразование, названное «восьмиричным» кодированием двоичной системы, удивительно экономно. Каким же образом стало возможно столь замечательное достижение? (Этот -совершенный способ нелегко приобретается нервной системой; благодаря повторению процесса обеспечивается классификация по иерархическим схемам, а классификация — наиболее фундаментальная логическая процедура.) Чтобы получить ответ, сформулируем проблему более конкретно: каким образом может происходить преобразование одной структуры, сложность которой яредставлена системой связей между простыми элементами, в другую структуру, сложность которой определяется самими элементами и их уникальным назначением? Такое преобразование может быть осуществлено с помощью простой системы конвергентных единиц, названных инженерами функциями «и», так как их реакция возникает в ответ на одновременный приход •сигналов (см. рис. IV-1 и IV-2). Такую систему пересекают пути, выполняющие функцию параллельного торможения — «не или», — которая реализуется через комбинацию функций «или» (у которых выходной сигнал определяется воздействием через любой из двух входов) и отрицательной функцией «не», тормозящей выходной сигнал элемента, когда каким-либо образом активируется •«го вход. Эта система так напоминает структуру сетчатки — наше -окно в мозг, что испытываешь искушение назвать функцией «не или» гиперполяризацию горизонтального слоя и функцией «и» — разряд ганглиозной клетки. Конечно, сетчатка построена не вполне так, как показано на этой схеме, однако обе формы •организации поразительно соответствуют друг другу с точки прения рассматриваемого процесса (ср. рис. IV-2 и IV-3).

Таким образом, перекодирование оказывается чрезвычайно эффективной частью процесса памяти, для осуществления которого конструкция нервной системы, по-видимому, великолепно.приспособлена. Формы перекодирования, которые возможны в нервной системе, фактически безграничны. Тем не менее можно выделить несколько классов кодов.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: