Классификация языков программирования

Тема №4 Язык программирования: эволюция, классификация

(О.Л. Голицина, И.И. Попов «Основы алгоритмизации и программирования» Стр. 38-45)

Эволюция Языков программирования

В развитии инструментального программного обеспечения (т.е. про­граммного обеспечения, служащего для создания программных средств в любой проблемной области) рассматривают пять поколений языков про­граммирования (ЯП). Языки про­граммирования как средство общения че­ловека с ЭВМ от поколения к поколению улучшали свои характеристики, становясь, все более доступными в освоении непрофессионалам.

Первые три поколения ЯП характеризовались более сложным на­бором зарезервированных слов и синтаксисом. Языки четвертого поко­ления все еще требуют соблюдения определенного синтаксиса при на­писании программ, но он значительно легче для освоения. Естественные ЯП, разрабатываемые в настоящее время, составят пятое поколение и позволят определять необходимые процедуры обработки информации, используя предложения языка, весьма близкого к естественному и не требующего соблюдения особого синтаксиса.

Поколения ЯП

Поколения Языки программирования Характеристика
Первое Машинные   Ориентированы на использование в конкретной ЭВМ, сложны в освоении, требу ют хорошего знании архитектуры ЭВМ
Второе Ассемблеры, Макроассемблеры Более удобны для использования, но по-прежнему машинно-зависимы
Третье Языки высокого уровня   Мобильные, человеко - ориентированные, проще в освоении
Четвертое Непроцедурные, объектно-ориентированные, языки запросов, параллельные Ориентированы на непрофессионального пользователя и на ЭВМ с параллельной архитектурой
Пятое Языки искусственного интеллекта, экспертных систем и баз знаний, естественные языки Ориентированы на повышение интеллектуального уровня ЭВМ и интерфейса с языками

ЯП первого поколения представляли собой набор машинных ко­манд в двоичном (бинарном) или восьмеричном формате, которым оп­ределялся архитектурой конкретной ЭВМ. Каждый тип ЭВМ имел свой ЯП, программы на котором были пригодны только для данного типа ЭВМ. От программиста при этом требовалось хорошее знание не только машинного языка, но и архитектуры ЭВМ.

Второе поколение ЯП характеризуется созданием языков ассемб­лерного типа (ассемблеров, макроассемблеров), позволяющих вместо двоичных и других форматов машинных команд использовать их мне­монические символьные обозначения (имена). Являясь существенным шагом вперед, ассемблерные языки все еще оставались машинно-зависимыми, а программист все также должен был быть хорошо знаком с организацией и функционированием аппаратной среды конкретного типа ЭВМ. При этом ассемблерные программы все так же затрудни­тельны для чтения, трудоемки при отладке и требуют больших усилий для переноса на другие типы ЭВМ. Однако и сейчас ассемблерные язы­ки используются при необходимости разработки высокоэффективного программного обеспечения (минимального по объему и с максимальной производительностью).

Третье поколение ЯП начинается с появления в 1956 г. первого языка высокого уровня — Fortran, разработанного под руководством Дж. Бэкуса в фирме IВМ. За короткое время Fortran становится основ­ным ЯП при решении инженерно-технических и научных задач. Перво­начально Fortran обладал весьма ограниченными средствами обеспече­ния работы с символьной информацией и с системой ввода-вывода. Од­нако постоянное развитие языка сделало его одним из самых распространенных ЯВУ на ЭВМ всех классов — от микро- до супер­ЭВМ, а его версии используются и для вычислительных средств нетра­диционной параллельной архитектуры.

Вскоре после языка Fortran появились такие ныне широко извест­ные языки, как Аlgol, Соbоl, Ваsiс, РL/1, Раscal, АРL, АDА, С, Forth, Lisp, Моdula и др. В настоящее время насчитывается свыше 2000 раз­личных языков высокого уровня.

Языки четвертого поколения носят ярко выраженный непроцедур­ный характер, определяемый тем, что программы на таких языках опи­сывают только что, а не как надо сделать. В программах формируются скорее соотношения, а не последовательности шагов выполнения алго­ритмов. Типичными примерами непроцедурных языков являются языки, используемые для задач искусственного интеллекта (например, Рrolog, Langin). Так как непроцедурные языки имеют минимальное число син­таксических правил, они значительно более пригодны для применения непрофессионалами в области программирования.

Второй тенденцией развития ЯП четвертого поколения являются объектно-ориентированные языки, базирующиеся на понятии про­граммного объекта, впервые использованного в языке Simulа-67 и со­ставившего впоследствии основу известного языка Smalltalk. Про­граммный объект состоит из структур данных и алгоритмов, при этом каждый объект знает, как выполнять операции со своими собственными данными. На самом деле, различные объекты могут пользоваться со­вершенно разными алгоритмами при выполнении действий, определен­ных одним и тем же ключевым словом (так называемое свойство полиморфизма). Например, объект с комплексными числами и массивами в качестве данных будет использовать различные алгоритмы для выпол­нения операции умножения. Такими свойствами обладают объектно-ориентированные Pascal Basic, С++, Smalltalk, Simulа, и ряд дру­гих языков программирования.

Третьим направлением развития языков четвертого поколения можно считать языки запросов, позволяющих пользователю получать информацию из баз данных. Языки запросов имеют свой особый син­таксис, который должен соблюдаться, как и в традиционных ЯП третье­го поколения, но при этом проще в использовании. Среди языков запро­сов фактическим стандартом стал язык SQL.

И, наконец, четвертым направлением развития являются языки па­раллельного программирования (модификация ЯВУ Fortran, языки Оссаm, SISAL, FР и др.), которые ориентированы на создание про­граммного обеспечения для вычислительных средств параллельной ар­хитектуры (многомашинные, мультипроцессорные среды и др.), в отли­чие от языков третьего поколения, ориентированных на традиционную однопроцессорную архитектуру.

К интенсивно развивающемуся в настоящее время пятому поколе­нию относятся языки искусственного интеллекта, экспертных систем, баз знаний (InterLisp, ExpertLisp, IQLisp, SIAL и др.), а также естествен­ные языки, не требующие освоения какого-либо специального синтак­сиса (в настоящее время успешно используются естественные ЯП с ог­раниченными возможностями — Clout, Q&А, НАL и др.).

Классификация языков программирования

Для того чтобы ЭВМ могла решать задачи, составленные человеком, она должна последовательно выполнять инструкции некоторой программы-алгоритма. Совокупность таких инструкций, направленных на решение конкретной зада­чи, называется компьютерной программой. Но это еще не все.

Компьютер не понимает естественного языка человека, а понимает только свой язык — машинный код. Что касает­ся языка программирования, то он с помощью фиксирован­ных систем обозначений и правил позволяет описывать ал­горитмы и структуры данных, которые впоследствии будут переведены транслятором в машинный код.

Все языки программирования можно разделить на язы­ки низкого, высокого и сверхвысокого уровней.

Языки низкого уровня это средство записи инструкций компьютеру простыми приказами-командами на аппаратном уровне. Такой язык зависит от структуры конкретной ЭВМ и иногда называется машинно-ориентированным языком. Этот язык плохо приспособлен для использования челове­ком, ведь запись программы на этом языке представляет со­бой последовательность нулей и единиц, и мало шансов, что сложная задача будет запрограммирована безошибочно. Для упрощения программирования был разработан язык симво­лического кодирования (автокод, или язык ассемблера). Про­грамма, написанная на таком языке, ближе человеку, но все равно требует от программиста широких познаний в этой области.

Следующая группа — языки программирования высокого уровня. Это языки, которые допускают описание задачи в наглядном, легко воспринимаемом виде. Их отличительной особенностью является ориентация не на систему команд той или иной ЭВМ, а на систему инструкций, характерных для записи алгоритмов определенного класса. К языкам програм­мирования высокого класса относятся Бейсик, Фортран, Ал­гол, Паскаль, Си и др.

К языкам программирования сверхвысокого уровня мож­но отнести Алгол-68, в котором сделана попытка формали­зовать описание языка, приведшая к появлению двух типов программ: абстрактной и конкретной. Первый тип программы — абстрактный — создается программистом, конкретный — выводится из первого. Существует предположение, что при таком подходе принципиально невозможно породить син­таксически (а на практике и семантически) неверную конк­ретную программу.


Изучение ЯП часто начинают с их классифика­ции. Определяющие факторы классификации обычно жестко не фиксиру­ются. Чтобы продемонстрировать характер типичной классификации, опи­шем наиболее часто применяемые факторы, дадим им условные названия и приведем примеры ЯП для каждой из классификационных групп.

Элементы языков программирования могут рассматриваться на следующих уровнях:

алфавит — совокупность символов, отображаемых на устройствах печати и экранах и/или вводимых с клавиатуры терминала.

лексика — совокупность правил образования цепочек символов (лексем), образующих идентификаторы (переменные и метки), операто­ры, операции и другие лексические компоненты языка. Сюда же вклю­чаются зарезервированные (запрещенные, ключевые) слова ЯП, предна­значенные для обозначения операторов, встроенных функций и пр.Иногда эквивалентные лексемы, и зависимости от ЯП, могут обо­значаться как одним символом алфавита, так и несколькими.

синтаксис — совокупность правил образования языковых конст­рукций, или предложений ЯП — блоков, процедур, составных операто­ров, условных операторов, операторов цикла и пр. Особенностью син­таксиса является принцип вложенности (рекурсивность) правил построения конструкций. Это значит, что элемент синтаксиса языка в своем определении прямо или косвенно в одной из его частей содержит сам себя. Например, в определении оператора цикла телом цикла явля­ется оператор, частным случаем которого является все тот же опера­тор цикла;

семантика — смысловое содержание конструкций, предложений языка, семантический анализ — это проверка смысловой правильности конструкции. Например, если мы в выражении используем перемен­ную, то она должна быть определена ранее по тексту программы, а из этого определения может быть получен ее тип. Исходя из типа пере­менной, можно говорит о допустимости операции с данной перемен­ной. Семантические ошибки возникают при недопустимом использова­нии операций, массивов, функций, операторов и пр.

Трансляторы

Программа, написанная на любом языке программирования, является исходной программой. Особенность таких про­грамм, как мы помним, заключается в том, что они состоят из инструкций, понятных человеку, но не понятных процес­сору компьютера. Чтобы процессор мог выполнить работу в соответствии с алгоритмом, записанным в исходной про­грамме, эта программа должна быть переведена на машин­ный язык — язык команд процессора. Такой перевод про­граммы называется трансляцией, а выполняется он специальными программами — трансля­торами.

Существует три вида трансляторов: интерпретаторы, ком­пиляторы и ассемблеры.

Интерпретатор транслятор, переводящий текст про­граммы поэтапно (покомандно) и сразу же (то есть парал­лельно) выполняющий оттранслированную команду исход­ной программы.

Компилятор транслирует текст программы в модуль на машинном языке, затем программа переписывается в опера­тивную память и лишь после этого исполняется процессо­ром компьютера. Именно с использованием трансляторов такого типа осуществляется перевод программы на многих языках программирования в машинный код. Поэтому рас­смотрим его чуть подробнее.

Схематически работу компилятора иллюстрирует рис. 1.6.

Цифрой 1 на схеме обозначен блок синтаксического кон­троля текста программы, цифрой 2 — генератор машинного кода.

 

Если генератор машинного кода компилятора перевел исходный текст программы в необходимую форму, значит, в тексте программы нет синтаксических ошибок, но это не говорит об отсутствии ошибок в алгоритме. Убедиться в пра­вильности работы программы можно только при ее тести­ровании, то есть при обработке результатов, получаемых в процессе работы программы.

Последний вид трансляторов — ассемблеры. Они предназ­начены для перевода программы, написанной на языке ас­семблера (автокода), в программу на машинном языке.

Все трансляторы, независимо от их вида, решают следу­ющие основные задачи:

+ выполняют анализ и проверяют синтаксис транслируе­мой программы;

+ генерируют машинный код программы;

+ распределяют память для выходной программы.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: