Свойства математического ожидания

1. Математическое ожидание постоянной равно этой постоянной

M[C]=C, т.к. С можно рассматривать как дискретную величину.

2. Постоянный множитель выносится за знак математического ожидания M[Cх]=C M[х]

Доказательство: Для дискретных величин, постоянную выносим за знак суммы, для непрерывных можно выносить за знак интеграла.

3. Математическое ожидание 2-х случайных величин равно сумме их математических ожиданий.

M[x+y]=M[x]+M[y]

4. Математическое ожидание произведения двух независимых случайных величин равно произведению математических ожиданий

M[x×y]=M[x]×M[y]

Можно обобщить на произвольное число сомножителей при условии их независимости.

Пример: Найти математическое ожидание суммы числа очков, которые могут выпасть при бросании двух игральных кубиков.

x – число очков на первом кубике;

y - число очков на втором кубике;

x            
Р 1/6 1/6 1/6 1/6 1/6 1/6

Найти математическое ожидание для x и для y.

M[x]= 1×1/6+2×1/6+3×1/6+4×1/6+5×1/6+6×1/6=1/6+2/6+3/6+4/6+5/6+6/6=21/6= 3 =7/2;

M[y] =7/2+7/2=14/2=7.

Итак, мы познакомились с одной из основных числовых характеристик случайной величины- математическим ожиданием, которое характеризует среднее значение случайной величины, около него группируются все возможные значения случайной величины.

Дисперсия

Математическое ожидание является важнейшей числовой характеристикой случайной величины. Но полностью случайную величину оно не характеризует.

Пример:

Найти математическое ожидание, если

x -10 -6 -2          
Р 1/6 1/8 1/4 1/16 1/4 1/16 1/8 1/16
y -2 -1            
Р 1/4 1/4 1/16   1/16 1/8 1/8 1/8

Во втором распределении значения случайной величины компактно сосредоточены около математического ожидания. Зная только среднее значение случайной величины нельзя представить себе расположение значений случайной величины. Если значения случайной величины рассеяны вдоль числовой оси, то математическое ожидание играет роль центра этого рассеяния, т.е. нужна еще одна числовая характеристика, показывающая как сильно рассеяны значения случайной величины вокруг этого центра. Дисперсия и характеризует рассеяние значения случайной величины около ее математического ожидания.

Пусть x – случайная величина математическое ожидание которой известно M[x], в качестве новой случайной величины рассмотрим разность

(x-M[x])

Т.е. эту разность называют отклонением случайной величины x от ее математического ожидания.

Определение: Дисперсией или рассеянием случайной величины x называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания, т.е

D[x]=M[(x-M[x])2] (1)

Если D - сравнительно малое число, то в этом случае значения случайной величины близки к ее математическому ожиданию. Если же дисперсия большое число, то значения сильно рассредоточены, рассеяны около математического ожидания.

Преобразуем формулу (1)

D[x]=M[х2-2×х×М[х]+М[х]]=M[x2]-2×M[x]×M[x]+m[x]2;

D=М[х2]-М2[х] (2)

Пусть х – непрерывная случайная величина, плотность распределения ее f(x) и математическое ожидание M[x], то для дисперсии существует такая формула:

(3)

(4)

Свойства дисперсии

1. Дисперсия постоянной равна 0.

Доказательство D[с] =0

D[с]=M[c2]-M2[c]=c2-c2 =0

2. Постоянный множитель можно выносить за знак дисперсии, возводя ее в квадрат.

Доказательство:

D[cx]=c2D[x]

D[cx]-M[c2x2]-M2[cx]=c2M[x2]-c2M[x]=c2([M[x]2-M[x]])=c2D[x]

3. Дисперсия суммы независимых случайных величин

D[х+у]=D[х]+D[у]

D[х+у] = М[х+у]22[х+у] = М[х2+2ху+у2]-(М[х]2+М[у]2)= М[х2]+М[2ху]+ М[у2]-М2[х]-М2[у] - М[2ху]= М[х2]-М2[х]+М[у2]-М2[у]=D[х]+ D[у].

Заметим, теорема обобщается на любое число взаимно независимых слагаемых. По определению следует, что дисперсия есть неотрицательное число и имеет квадратичную размерность.

Пример.

Найти дисперсию случайной величины, плотность распределения которой задана

;

;

Пример № 2.

Число очков, выбиваемых при одном выстреле из 2-х стрелков, подчиняется следующему распределению:

x1      
Р 0,3 0,2 0,5
x2      
Р 0,1 0,6 0,3

Найти дисперсию случайных величин x1 и x2.

M[x1]= 0,3+0,4+1,5=2,2;

M[x2]= 0,1+1,2+0,9=2,2;

D[x1+x2]=D[x1]+D[x2]=M[x12]-M2[x1]+M[x22]-M2[x1];

x 12      
Р 0,3 0,2 0,5
x 22      
Р 0,1 0,6 0,3

M[x12]= 0,3+0,8+4,5=5,6;

M[x22]= 0,1+2,4+2,7=5,2;

D[x1+x2]= 5,6-4,84+5,2-4,84=10,8-9,68=1,12.

D[x1]= 0,76;

D[x 2 ]= 0,36.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: