Перестановки, сочетания и размещения без повторений

Задачи по комбинаторике. Примеры решений

На данном уроке мы коснёмся элементов  комбинаторики, которые потребуются для дальнейшего изучения теории вероятностей. Следует отметить, что комбинаторика является самостоятельным разделом высшей математики (а не частью тервера) и по данной дисциплине написаны увесистые учебники, содержание которых, порой, ничуть не легче абстрактной алгебры. Однако нам будет достаточно небольшой доли теоретических знаний, и в данной статье я постараюсь в доступной форме разобрать основы темы с типовыми комбинаторными задачами. А многие из вас мне помогут;-)

Чем будем заниматься? В узком смысле комбинаторика – это подсчёт различных комбинаций, которые можно составить из некоторого множества дискретных объектов. Под объектами понимаются какие-либо обособленные предметы или живые существа – люди, звери, грибы, растения, насекомые и т.д. При этом комбинаторику совершенно не волнует, что множество состоит из тарелки манной каши, паяльника и болотной лягушки. Принципиально важно, что эти объекты поддаются перечислению – их три (дискретность) и существенно то, что среди них нет одинаковых.

С множеством разобрались, теперь о комбинациях. Самыми распространёнными видами комбинаций являются перестановки объектов, их выборка из множества (сочетание) и распределение (размещение). Давайте прямо сейчас посмотрим, как это происходит:

Перестановки, сочетания и размещения без повторений

Не пугайтесь малопонятных терминов, тем более, некоторые из них действительно не очень удачны. Начнём с хвоста заголовка – что значит «без повторений»? Это значит, что в данном параграфе будут рассматриваться множества, которые состоят из различных объектов. Например, … нет, кашу с паяльником и лягушкой предлагать не буду, лучше что-нибудь повкуснее =) Представьте, что перед вами на столе материализовалось яблоко, груша и банан (при наличии таковых ситуацию можно смоделировать и реально). Выкладываем фрукты слева направо в следующем порядке:

яблоко / груша / банан

Вопрос первый: сколькими способами их можно переставить?

Одна комбинация уже записана выше и с остальными проблем не возникает:

яблоко / банан / груша
груша / яблоко / банан
груша / банан / яблоко
банан / яблоко / груша
банан / груша / яблоко

Итого: 6 комбинаций или 6 перестановок.

Хорошо, здесь не составило особого труда перечислить все возможные случаи, но как быть, если предметов больше? Уже с четырьмя различными фруктами количество комбинаций значительно возрастёт!

Никаких мучений – 3 объекта можно переставить способами.

Вопрос второй: сколькими способами можно выбрать а) один фрукт, б) два фрукта, в) три фрукта, г) хотя бы один фрукт?

Зачем выбирать? Так нагуляли же аппетит в предыдущем пункте – для того, чтобы съесть! а) Один фрукт можно выбрать, очевидно, тремя способами – взять либо яблоко, либо грушу, либо банан.

Формальный подсчёт проводится по формуле количества сочетаний:

Запись в данном случае следует понимать так: «сколькими способами можно выбрать 1 фрукт из трёх?»

б) Перечислим все возможные сочетания двух фруктов:

яблоко и груша;
яблоко и банан;
груша и банан.

Количество комбинаций легко проверить по той же формуле:

Запись понимается аналогично: «сколькими способами можно выбрать 2 фрукта из трёх?».

в) И, наконец, три фрукта можно выбрать единственным способом:

Кстати, формула количества сочетаний сохраняет смысл и для пустой выборки:
способом можно выбрать ни одного фрукта – собственно, ничего не взять и всё.

г) Сколькими способами можно взять хотя бы один фрукт? Условие «хотя бы один» подразумевает, что нас устраивает 1 фрукт (любой) или 2 любых фрукта или все 3 фрукта:
способами можно выбрать хотя бы один фрукт.

Для ответа на следующий вопрос мне требуется два добровольца… …Ну что же, раз никто не хочет, тогда буду вызывать к доске =)

Вопрос третий: сколькими способами можно раздать по одному фрукту Даше и Наташе?

Для того чтобы раздать два фрукта, сначала нужно их выбрать. Согласно пункту «бэ» предыдущего вопроса, сделать это можно способами, перепишу их заново:

яблоко и груша;
яблоко и банан;
груша и банан.

Но комбинаций сейчас будет в два раза больше. Рассмотрим, например, первую пару фруктов:
яблоком можно угостить Дашу, а грушей – Наташу;
либо наоборот – груша достанется Даше, а яблоко – Наташе.

И такая перестановка возможна для каждой пары фруктов.

В данном случае работает формула количества размещений:

Она отличается от формулы тем, что учитывает не только количество способов, которым можно выбрать несколько объектов, но и все перестановки объектов в каждой возможной выборке. Так, в рассмотренном примере, важно не только то, что можно просто выбрать, например, грушу и банан, но и то, как они будут распределены (размещены) между Дашей и Наташей.

Постарайтесь хорошо уяснить разницу между перестановками, сочетаниями и размещениями. В простейших случаях можно пересчитать все возможные комбинации вручную, но чаще всего это становится неподъемной задачей, именно поэтому и нужно понимать смысл формул.

Также напоминаю, что сейчас речь идёт о множестве с различными объектами, и если яблоко/грушу/банан заменить на 3 яблока или даже на 3 очень похожих яблока, то в контексте рассмотренной задачи они всё равно будут считаться различными.

Остановимся на каждом виде комбинаций подробнее:

Перестановки

Перестановками называют комбинации, состоящие из одних и тех же различных объектов и отличающиеся только порядком их расположения. Количество всех возможных перестановок выражается формулой

Отличительной особенностью перестановок является то, что в каждой из них участвует  ВСЁ множество, то есть, все объектов. Например, дружная семья:

Задача 1

Сколькими способами можно рассадить 5 человек за столом?

Решение: используем формулу количества перестановок:

Ответ: 120 способами

Невероятно, но факт. Обратите внимание, что здесь не имеет значения круглый ли стол, квадратный, или вообще все люди сели на скамейку вдоль одной стены – важно лишь количество объектов и их взаимное расположение. Помимо перестановок людей, часто встречается задача о перестановках различных книг на полке, но это было бы слишком просто даже для чайника:

Задача 2

Сколько четырёхзначных чисел можно составить из четырёх карточек с цифрами 0, 5, 7, 9?

Для того чтобы составить четырёхзначное число нужно задействовать все четыре карточки (цифры на которых различны! ), и это очень важная предпосылка для применения формулы Очевидно, что, переставляя карточки, мы будем получать различные четырёхзначные числа, … стоп, а всё ли тут в порядке?;-)

Хорошенько подумайте над задачей! Вообще, это характерная черта комбинаторных и вероятностных задач – в них НУЖНО ДУМАТЬ. И зачастую думать по-житейски, как, например, в разборе вступительного примера с фруктами. Нет, конечно, я не призываю тупо прорабатывать другие разделы математики, однако должен заметить, что те же интегралы можно научиться решать чисто механически.

Решение и ответ в конце урока.

Увеличиваем обороты:

Сочетания

В учебниках обычно даётся лаконичное и не очень понятное определение сочетаний, поэтому, в моих устах формулировка будет не особо рациональной, но, надеюсь, доходчивой:

Сочетаниями называют различные комбинации из объектов, которые выбраны из множества различных объектов, и которые отличаются друг от друга хотя бы одним объектом. Иными словами, отдельно взятое сочетание – это уникальная выборка из элементов, в которой не важен их порядок (расположение). Общее же количество таких уникальных сочетаний рассчитывается по формуле .

Задача 3

В ящике находится 15 деталей. Сколькими способами можно взять 4 детали?

Решение: прежде всего, снова обращаю внимание на то, что по логике условия, детали считаются различными – даже если они на самом деле однотипны и визуально одинаковы  (в этом случае их можно, например, пронумеровать).

В задаче речь идёт о выборке из 4-х деталей, в которой не имеет значения их «дальнейшая судьба» – грубо говоря, «просто выбрали 4 штуки и всё». Таким образом, у нас имеют место сочетания деталей. Считаем их количество:

Здесь, конечно же, не нужно ворочать огромные числа .
В похожей ситуации я советую использовать следующий приём: в знаменателе выбираем наибольший факториал (в данном случае ) и сокращаем на него дробь. Для этого числитель следует представить в виде . Распишу очень подробно:

способами можно взять 4 детали из ящика.

Ещё раз: что это значит? Это значит, что из набора 15-ти различных деталей можно составить одну тысячу триста шестьдесят пять уникальных сочетания 4-х деталей. То есть, каждая такая комбинация из 4-х деталей будет отличаться от других комбинаций хотя бы одной деталью.

Ответ: 1365 способами

Формуле необходимо уделить самое пристальное внимание, поскольку она является «хитом» комбинаторики. При этом полезно понимать и без всяких вычислений записывать «крайние» значения: . Применительно к разобранной задаче:

– единственным способом можно взять ни одной детали;
способами можно взять 1 деталь (любую из 15-ти);
способами можно взять 14 деталей (при этом какая-то одна из 15-ти останется в ящике);
– единственным способом можно взять все пятнадцать деталей.

Рекомендую внимательно ознакомиться с биномом Ньютона и треугольником Паскаля, по которому, к слову, очень удобно выполнять проверку вычислений при небольших значениях «эн».

Задача 4

Сколькими способами из колоды в 36 карт можно выбрать 3 карты?

Это пример для самостоятельного решения. Чем приятны многие комбинаторные задачи, так это краткостью – главное, разобраться в сути. И суть, бывает, открывается с различных сторон. Разберём весьма поучительный пример:

Задача 4

В шахматном турнире участвует человек и каждый с каждым играет по 1-й партии. Сколько всего партий сыграно в турнире?

Поскольку я сам играю в шахматы и неоднократно принимал участие в круговых турнирах, то сразу же сориентировался по турнирной таблице размером клеток, в которой результат каждой партии учитывается дважды и, кроме того, затушёвываются клетки «главной диагонали» (т.к. участники не играют сами с собой). Исходя из проведённых рассуждений, общее количество сыгранных партий рассчитывается по формуле . Такое решение полностью корректно (см. соответствующий файл банка готовых решений ) и на долгое время я забыл о нём по принципу «решено, да и ладно».

Однако один из посетителей сайта заметил, что на самом деле здесь можно руководствоваться самыми что ни на есть банальными сочетаниями:
различных пар можно составить из соперников (кто играет белыми, кто чёрными – не важно).

Эквивалентной является задача о рукопожатиях: в отделе работает мужчин и каждый с каждым здоровается за руку, сколько рукопожатий они совершают? К слову, шахматисты тоже пожимают друг другу руку перед каждой партией.

Ну а вывода тут два:

– во-первых, не всё очевидное – очевидно;

– и во-вторых, не бойтесь решать задачи «нестандартно»!

Большое спасибо за ваши письма, они помогают улучшить качество учебных материалов!

Размещения

Или «продвинутые» сочетания. Размещениями называют различные комбинации из объектов, которые выбраны из множества различных объектов, и которые отличаются друг от друга как составом объектов в выборке, так и их порядком. Количество размещений рассчитывается по формуле

Что наша жизнь? Игра:

Задача 5

Боря, Дима и Володя сели играть в «очко». Сколькими способами им можно сдать по одной карте? (колода содержит 36 карт)

Решение: ситуация похожа на Задачу 4, но отличается тем, что здесь важно не только то, какие три карты будут извлечены из колоды, но и то, КАК они будут распределены между игроками. По формуле размещений:

способами можно раздать 3 карты игрокам.

Есть и другая схема решения, которая, с моей точки зрения, даже понятнее:

способами можно извлечь 3 карты из колоды.

Теперь давайте рассмотрим, какую-нибудь одну из семи тысяч ста сорока комбинаций, например: король пик, 9 червей, 7 червей. Выражаясь комбинаторной терминологией, эти 3 карты можно «переставить» между Борей, Димой и Володей способами:

КП, 9Ч, 7Ч;
КП, 7Ч, 9Ч;
9Ч, КП, 7Ч;
9Ч, 7Ч, КП;
7Ч, КП, 9Ч;
7Ч, 9Ч, КП.

И аналогичный факт справедлив для любого уникального набора из 3-х карт. А таких наборов, не забываем, мы насчитали . Не нужно быть профессором, чтобы понять, что найденное количество сочетаний следует умножить на шесть:

способами можно сдать по одной карте 3-м игрокам.

По существу, получилась наглядная проверка формулы , окончательный смысл которой мы проясним в следующем параграфе.

Ответ: 42840

Возможно, у вас остался вопрос, а кто же раздавал карты? …Наверное, преподаватель =)
И чтобы никому не было обидно, в следующей задаче примет участие вся студенческая группа:

Задача 6

В студенческой группе 23 человека. Сколькими способами можно выбрать старосту и его заместителя?

Задача о «размещении» должностей в коллективе встречается очень часто и является самым настоящим баяном. Краткое решение и ответ в конце урока.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: