Генная инженерия. Задачи. Методы. Достижения. Перспективы

ГЕННАЯ ИНЖЕНЕРИЯ, или технология рекомбинантных ДНК, изменение с помощью биохимических и генетических методик хромосомного материала – основного наследственного вещества клеток. Хромосомный материал состоит из дезоксирибонуклеиновой кислоты (ДНК). Биологи изолируют те или иные участки ДНК, соединяют их в новых комбинациях и переносят из одной клетки в другую. В результате удается осуществить такие изменения генома, которые естественным путем вряд ли могли бы возникнуть. Методом генной инженерии получен уже ряд препаратов, в том числе инсулин человека и противовирусный препарат интерферон. И хотя эта технология еще только разрабатывается, она сулит достижение огромных успехов и в медицине, и в сельском хозяйстве. В медицине, например, это весьма перспективный путь создания и производства вакцин. В сельском хозяйстве с помощью рекомбинантной ДНК могут быть получены сорта культурных растений, устойчивые к засухе, холоду, болезням, насекомым-вредителям и гербицидам.

Методы генной инженерии:

- метод секвенирования – определение нуклеотидной последовательности ДНК;

- метод обратной транскрипции ДНК;

- размножение отдельных фрагментов ДНК.

Современная биотехнология — это новое научно-техническое направление, возникшее в 60—70-х годах нашего столетия. Особенно бурно она стала развиваться с середины 70-х годов после первых успехов генно-инженерных экспериментов. Биотехнология, в сущности, не что иное, как использование культур клеток бактерий, дрожжей, животных или растений, метаболизм и биосинтетические возможности которых обеспечивают выработку специфических веществ. Биотехнология на основе применения знаний и методов биохимии, генетики и химической техники дала возможность
получения с помощью легко доступных, возобновляемых ресурсов тех веществ
и которые важны для жизни и благосостояния.

В процессе создания организмов с новой генетической программой можно выделить три основных этапа:

1. Синтез искусственного гена или выделение необходимого гена из клетки донора.

2. Сшивание полученного гена с направляющей (векторной) молекулой ДНК.

3. Введение полученной рекомбинантной молекулы ДНК в клетку-реципиент.

Этап

Синтез искусственных генов вне организма возможен двумя способами: химическим и ферментативным.

Химический синтез – создание гена с известной нуклеотидной последовательностью. Впервые искусственный ген был синтезирован в 1970 г. индийским ученым Г. Кораной. Это был ген аланиновой т-РНК. Он состоял из 72 нуклеотидов и включал только структурную часть. Регуляторная часть гена отсутствовала, поэтому ген был функционально не активным. В 1976 г. Корана осуществил химический синтез другого гена – гена тирозиновой т-РНК кишечной палочки, который включал промотор и терминатор, т.е. регуляторные части.

Ферментативный синтез искусственных генов – это синтез ДНК на матрице и-РНК в процессе обратной транскрипции. Ферментативный синтез искусственных генов стал возможным после открытия в 1970 г. ферментов обратной транскрипции – обратных транскриптаз. ДНК, полученная в процессе обратной транскрипции, называется ДНК-копией. Полученные путем ферментативного синтеза гены не имеют регуляторных участков, поэтому для обеспечения работы этих генов необходимо присоединять промотор, взятый из генома бактериальной клетки. Таким образом были получены гены, отвечающие за синтез некоторых гормонов: инсулина, соматотропина, глобиновые гены.

Этап

Состоит в сшивании полученного гена с направляющей, или векторной, молекулой ДНК. В качестве направляющих молекул могут использоваться:

а) бактериальные плазмиды, т.е. кольцевые молекулы ДНК, присутствующие в бактериальной клетке;

б) фаги (фаг лямбда);

в) вирусы (вирус SV 40).

Плазмидную ДНК выделяют и расщепляют ферментом рестриктазой, превращая кольцевую молекулу в линейную. Причем после разрезания одна из цепей оказывается длиннее другой на несколько нуклеотидов, т.е. формируются так называемые «липкие концы». Эти нуклеотиды могут свободно спариваться с комплементарными нуклеотидами другого фрагмента ДНК с липкими концами. Благодаря этому ДНК из различных источников могут объединяться, образуя рекомбинантные молекулы. Рекомбинантную конструкцию вводят затем в бактерию, где она реплицируется.

Этап

Состоит в проникновении гибридной молекулы ДНК в клетку-реципиент и встраивании в ее геном. Способ введения в клетку гибридных молекул зависит от вектора. Если в качестве вектора используется плазмида, то введение происходит по типу трансформации; если в качестве вектора используется фаг или вирус – по типу трансдукции.

Достижения генной инженерии могут быть использованы по следующим направлениям.

1. Введение генов эукариот в бактерии и создание таких микроорганизмов, которые могут в промышленном масштабе синтезировать биологически активные вещества: антибиотики, витамины, гормоны. Например, были синтезированы гены, отвечающие за синтез инсулина, введены в геном кишечной палочки, которая стала продуцировать инсулин. Сегодня возможно получение таким образом соматостатина, СТГ, брадикинина и других биологически активных веществ.

2. Генотерапия – получение лечебного эффекта с помощью введения в организм чужеродных генов. Клинические испытания по доставке функционально активных молекул ДНК в клетки человека были начаты в 1990 г. и касались таких заболеваний, как гемофилия, серповидно-клеточная анемия, различные ферментопатии. В настоящее время допускается лечение не только моногенных заболеваний, но и мультифакториальных (диабет, атеросклероз, онкологические и психические заболевания).

В зависимости от способа введения экзогенной ДНК в геном пациента генная терапия может проводиться либо в культуре клеток (exvivo), либо непосредственно в организме (invivo).

Клеточная генная терапия exvivo предполагает:

· выделение и культивирование специфических типов клеток (например, опухолевых);

· введение в них чужеродных генов;

· отбор клеток с рекомбинантными молекулами ДНК;

· трансплантацию этих клеток тому же пациенту.

Генная терапия invivo основана на прямом введении клонированных и упакованных последовательностей ДНК в ткани больного.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: