Цифровые технологии управления движением

Встроенные в МУ миниатюрные интеллектуальные элементы должны быть повышенной стойкости к тепловым, вибрационным, электромагнитным и другим воздействиям. Это возможно за счет высокой концентрации и плотной упаковки схем, уменьшения монтажных соединений и использования твердотельных элементов. Перспективные электронные блоки должны быть многофункциональными с широкими коммуникационными возможностями.

Появились силовые электронные приборы – это силовые полевые транзисторы, биполярные транзисторы с изолированным затвором, коммутируемые теристоры и интеллектуальные силовые модули. Они отличаются высоким быстродействием (с частотой коммуникации до 100 кГц), высоким значением коммутируемых токов и напряжений – до 2400 А и 3300 В, малыми коммутационными потерями с малой управляемой мощностью.

Используются силовые преобразователи в канале управления движением, защите устройств, аварийных режимах и в диагностике неисправностей. В МС полупроводниковые приборы являются базой для создания новых силовых преобразователей, которые являются промежуточным звеном между компьютерным управлением и исполнительными двигателями.

Новая элементная база ЦСУ[8] для выполнения вычислительных функций стали цифровые сигнальные процессоры. Требования к вычислительным устройствам:

Ø высокая скорость вычислений (умножение, суммирование);

Ø цифровая обработка сигналов в реальном времени;

Ø время выполнения команд должно быть известно точно и заранее.

В МС ЦСУ выполняют следующие специальные функции;

Ø решение прямых и обратных кинематических задач;

Ø координированное управление всеми степенями подвижности манипулятора с расчетом синхронизированных во времени сигналов управления;

Ø реализация алгоритмов адаптивного и интеллектуального управления;

Ø фильтрация сигналов о положении, скорости и ускорении поступающих от датчиков обратной связи;

Ø объем данными с компьютером верхнего уровня управления.

Микропроцессоры также как компьютера Pentium компании Intel представляют собой ЦПУ[9], выполненное на одном кристалле, и требуют дополнительной микросхемы для реализации всех вычислительных функций. Эти микропроцессоры плохо приспособлены в выполнению цифровой обработки сигналов. Цифровые сигнальные процессоры (DSP-процессоры) оптимизированы для реализации операций: умножение матриц и манипуляций с графическими изображениями. Эти операции DSP-процессоры производят обработку цифровых сигналов в реальном масштабе времени, выполнение арифметических операций и накапливают результаты за один машинный цикл.

DSP-процессоры выполняют следующие основные операции:

Ø фильтрацию входного аналогового сигнала;

Ø аналогово-цифровое преобразование;

Ø цифровую обработку сигналов по заданному алгоритму в реальном масштабе времени (производительность до операций в секунду;

Ø цифроаналоговое преобразование.

В состав DSP входят ЦПУ, ОЗУ, ПЗУ, последовательно-параллельные интерфейсы, схема обработки прерываний. Гибкая архитектура DSP позволяет достигнуть очень высокую степень параллельной работы. За один цикл DSP семейства ADSP-21 может выполнять следующие операции:

Ø генерация адреса и выбор команды программы;

Ø выполнение двух перемещений данных;

Ø обновление двух указателей адреса;

Ø выполнение вычислительных операций;

Ø передача или прием данных от двух последовательных портов;

Ø обновление регистра таймера.

В современном DSP более 2 Мбит внутренней памяти размещено на 1 см2, платы, толщина которой 1,35 мм, потребляемая мощность ~100 мвт.

Программируемые вычислительные матрицы FPGA

Они представляют собой интегральные микросхемы с логическими ячейками программируемых переключателей. Каждая логическая схема состоит из:

Ø блока ввода-вывода соединяющего внутреннюю логику кристалла с выводами корпуса микросхемы;

Ø конфигурируемых логических блоков, реализующих логические и регистровые функции;

Ø блочной памяти;

Ø модулей управления синхронизацией;

Ø трассировочных ресурсов, соединяющих все элементы.

Программирование FPGA осуществляет пользователь. Для этого применяется специальное программное обеспечение, включающее в себя модули текстового и схемного ввода, моделирования, автоматической трассировки, создания и загрузки конфигурационных данных, специальные библиотеки макросов. Разработчик может многократно загружать проект в микросхему и тестировать ее на реальном изделии.

Если разработка идет в большую серию, то используется более эффективная технология микросхем «одиночного» решения ASIC, где жестко завязана программа и их нельзя перепрограммировать как FPGA. Достоинством микросхем ASIC является их надежность, дешевизна, невозможность копирования, малая потребляемая мощность.

Лекция 6.

Контроллеры движения

 

Современное технологическое управление движением позволяет перейти от внешних управляющих устройств к КД[10]. Встроенные в МС контроллеры движения выполнены на отдельной плате и в настоящее время используются до 50%.

Преимущества КД:

Ø координирование управлением движения по нескольким осям одновременно (до 4-8 угловых двигателей приводов);

Ø обеспечение высококачественных движений;

Ø планирование и генерация сложных движений с модификацией параметров в процессе движения;

Ø развитие программного обеспечения для инсталляции программирования и мониторинга движений;

Ø взаимодействие с компьютеров верхнего уровня, с программной пользователя, операционной системой реального времени, возможность загрузки программ в Интернет;

Ø большие интерфейсные возможности благодаря встроенным цифровым счетчикам АЦП и ЦАП, дискретным входам/выходам, наличию цифровых машин;

Ø выдача аналоговых и импульсных команд сигналов, получение и обработка информации от датчика обратной связи.

Задачи управления движением МС можно разделить на две части:

Ø планирование движения;

Ø исполнение во времени.

Планирование движения осуществляется оператором на компьютере верхнего уровня с использованием пакета прикладным программ. Контроллер движения выполняет расчеты и дает управляющие сигналы на привода.

В состав контроллера движения входят современные цифровые устройства (сигнальные процессоры DSP, программируемая матрица FPGA и flash-память и запоминающее оперативное устройство RAM). В современных СУ вид и параметры регуляторов автоматически модифицируются в зависимости от выполняемых задач. Адаптивная настройка регуляторов необходима для парирования возмущающих воздействий путем введения отрицательных обратных связей в исполнительные привода.

Применение мехатронных систем

в автоматизированных технологических процессах

Суть мехатронного подхода состоит в объединении элементов в интегрированные модули на этапах проектирования, создания и объединения совместно с интерфейсными компонентами при эксплуатации МС в технологических процессах. Интегрированные МС отличаются высокой надежностью, устойчивостью к неблагоприятным внешним воздействиям, точностью выполняемых движений, модульностью и компактностью конструкции. С точки зрения использования их в технологических процессах это целостные изделия удобные в работе, в настройке и программировании движений.

Но интегрированные МС имеют и отрицательную сторону – они менее гибки, то есть обладают ограниченными возможностями для модернизации и реконфигурации. Поэтому в технологических процессах применяются МС различного уровня интеграции, что дает широкий выбор для выполнения технологических автоматизированных производств.

Выделяют три метода интеграции ММ:

1. Первый метод заключается в исключении из их структуры промежуточных преобразователей и соответствующих интерфейсов. Это наиболее глубокий уровень интеграции.

2. Второй метод предполагает аппаратно-конструктивное объединение устройств различной физической природы в едином корпусе ММ (все в одном блоке).

3. Третий метод интеграции заключается в переносе функциональной нагрузки от механических узлов к интеллектуальным устройствам. Это придает ММ гибкость, так как их легко перепрограммировать на новую задачу. Этот метод позволяет минимизировать механическую сложность ММ.

В ММ применяются ВМД[11], заполняющие пару «двигатель + механический преобразователь движения» на один элемент двигатель. При этом исключаются механические преобразователи и интерфейс. Используются как угловые, так и линейные двигатели.

В последнее время применяются в ММ на базе двигателей переменного тока так называемые «бессенсорные» способы управления. Стоимость их значительно ниже двигателей постоянного тока. Управление этими двигателями осуществляется на базе создания компьютерных моделей процессов, протекающих в них, и создании вычислительных процедур в реальном масштабе времени.

Применяются также ИСП[12], объединяющие электрические и электроинформационные преобразования. Объединение компьютерных устройств с ИСП позволяет получить новые интеллектуальные свойства ММ.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: