Сортировка слиянием (MergeSort)

Сортировка слиянием (англ. merge sort) — алгоритм сортировки, который упорядочивает списки (или другие структуры данных, доступ к элементам которых можно получать только последовательно, например — потоки) в определённом порядке. Эта сортировка — хороший пример использования принципа «разделяй и властвуй». Сначала задача разбивается на несколько подзадач меньшего размера. Затем эти задачи решаются с помощью рекурсивного вызова или непосредственно, если их размер достаточно мал. Наконец, их решения комбинируются, и получается решение исходной задачи.

Для решения задачи сортировки эти три этапа выглядят так:

1. Сортируемый массив разбивается на две части примерно одинакового размера;

2. Каждая из получившихся частей сортируется отдельно, например — тем же самым алгоритмом;

3. Два упорядоченных массива половинного размера соединяются в один.

1.1. - 2.1. Рекурсивное разбиение задачи на меньшие происходит до тех пор, пока размер массива не достигнет единицы (любой массив длины 1 можно считать упорядоченным).

3.1. Cоединение двух упорядоченных массивов в один.
Основную идею слияния двух отсортированных массивов можно объяснить на следующем примере. Пусть мы имеем два подмассива. Пусть также, элементы подмассивов в каждом из этих подмассивов отсортированы по возрастанию. Тогда:
3.2. Слияние двух подмассивов в третий результирующий массив.
На каждом шаге мы берём меньший из двух первых элементов подмассивов и записываем его в результирующий массив. Счетчики номеров элементов результирующего массива и подмассива из которого был взят элемент увеличиваем на 1.
3.3. "Прицепление" остатка.
Когда один из подмассивов закончился, мы добавляем все оставшиеся элементы второго подмассива в результирующий массив.

 

Полный перебор подмножеств

Полный перебор (или метод «грубой силы», англ. bruteforce) — метод решения задачи путем перебора всех возможных вариантов. Сложность полного перебора зависит от количества всех возможных решений задачи. Если пространство решений очень велико, то полный перебор может не дать результатов в течение нескольких лет или даже столетий.

Любая задача из класса NP может быть решена полным перебором. При этом, даже если вычисление целевой функции от каждого конкретного возможного решения задачи может быть осуществлена за полиномиальное время, в зависимости от количества всех возможных решений полный перебор может потребовать экспоненциального времени работы.

В криптографии на вычислительной сложности полного перебора основывается оценка криптостойкости шифров. В частности, шифр считается криптостойким, если не существует метода «взлома» существенно более быстрого чем полный перебор всех ключей. Криптографические атаки, основанные на методе полного перебора, являются самыми универсальными, но и самыми долгим

Методы оптимизации полного перебора

Метод ветвей и границ

Для ускорения перебора метод ветвей и границ использует отсев подмножеств допустимых решений, заведомо не содержащих оптимальных решений.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: