Раздел «Оптика. Элементы атомной и ядерной физики»

Экзаменационные задачи по физике,

1. На мыльную пленку с показателем преломления п =1,33 падает по нормали монохроматический свет с длиной волны l=0,6 мкм. Отраженный свет в результате интерференции имеет наибольшую яркость. Какова наименьшая возможная толщина d min пленки?

2. Между стеклянной пластинкой и лежащей на ней плосковыпуклой линзой находится жидкость. Найти показатель преломления жидкости, если радиус r 3 третьего темного кольца Ньютона при наблюдении в отраженном те с длиной волны l=0,6 мкм равен 0,82 мм. Радиус кривизны линзы R =0,5 м.

Решение задачи:

3. На стеклянную пластину нанесен тонкий слой прозрачного вещества с показателем преломления п =1,3. Пластинка освещена параллельным пучком монохроматического света с длиной волны l=640нм, падающим на пластинку нормально. Какую минимальную толщину d min должен иметь слой, чтобы отраженный пучок имел наименьшую яркость?

Решение задачи:

4. На тонкий стеклянный клин падает нормально параллельный пучок света с длиной волны l=500нм. Расстояние между соседними темными интерференционными полосами в отраженном свете b =0,5 мм. Определить угол a между поверхностями клина. Показатель преломления стекла, из которого изготовлен клин, п =1,6.

 

Решение задачи:

5. Плосковыпуклая стеклянная линза с фокусным расстоянием F =1 м лежит выпуклой стороной на стеклянной пластинке. Радиус пятого темного кольца Ньютона в отраженном свете r 5=1,1 мм. Определить длину световой волны l.

Решение задачи:

6. Между двумя плоскопараллельными пластинами на расстоянии L =10 см от границы их соприкосновения находится проволока диаметром d =0,01 мм, образуя воздушный клин. Пластины освещаются нормально падающим монохроматическим светом (l=0,6 мкм). Определить ширину b интерференционных полос, наблюдаемых в отраженном свете.

Решение задачи:

7. Установка для наблюдения колец Ньютона освещается нормально падающим монохроматическим светом (l=590 нм). Радиус кривизны R линзы равен 5 см. Определить толщину d 3 воздушного промежутка в том месте, где в отраженном свете наблюдается третье светлое кольцо.

Решение задачи:

8. Точечный источник света сl=500нм помещен на расстоянии а =0,500 м перед непрозрачной преградой с отверстием радиуса r =0,500 мм. Определить расстояние b от преграды до точки, для которой число m открываемых отверстием зон Френеля будет равно: а) 1, б) 5, в) 10.

9. Исходя из определения зон Френеля, найти число m зон Френеля, которые открывает отверстие радиуса r для точки, находящейся на расстоянии b от центра отверстия, в случае если волна, падающая на отверстие, плоская.

10. На непрозрачную преграду с отверстием радиуса r =1,000 мм падает плоская монохроматическая световая волна. Когда расстояние от преграды до установленного за ней экрана равно b 1=0,575 м, в центре дифракционной картины наблюдается максимум интенсивности. При увеличении расстояния до значения b 2=0,862 м максимум интенсивности сменяется минимумом. Определить длину волны λ света.

 

Решение задачи:

11. Вычислить радиусы первых пяти зон Френеля, если расстояние от источника света до волновой поверхности равно 1 м, расстояние от волновой поверхности до точки наблюдения также равно 1 м и λ=5·10-7 м.

 

12. На поверхность дифракционной решетки нормально к ее поверхности падает монохроматический свет. Постоянная дифракционной решетки в п =4,6 раза больше длины световой волны. Найти общее число m max дифракционных максимумов, которые теоретически можно наблюдать в данном случае.

 

Решение задачи:

13. На дифракционную решетку падает нормально параллельный пучок белого света. Спектры третьего и четвертого порядка частично накладываются друг на друга. На какую длину волны в спектре четвертого порядка накладывается граница (l=780 нм) спектра третьего порядка?

14. На дифракционную решетку, содержащую п =600 штрихов на миллиметр, падает нормально белый свет. Спектр проецируется помещенной вблизи решетки линзой на экран. Определить длину l спектра первого порядка на экране, если расстояние от линзы до экрана 11,2 м. Границы видимого спектра: lкр=780 нм, lф=400нм.

 

 

Решение задачи:

15. На дифракционную решетку, содержащую п =100 штрихов на 1 мм, нормально падает монохроматический свет. Зрительная труба спектрометра наведена на максимум второго порядка. Чтобы навести трубу на другой максимум того же порядка, ее нужно повернуть на угол Dj=16°. Определить длину волны l света, падающего на решетку.

 

Решение задачи:

16. Постоянная дифракционной решетки в п =4 раза больше длины световой волны монохроматического света, нормально падающего на ее поверхность. Определить угол a. между двумя первыми симметричными дифракционными максимумами.

Решение задачи:

17. Для какой длины волны дифракционная решетка с постоянной d =5 мкм имеет угловую дисперсию D = 6,3·105 рад/м в спектре третьего порядка?

18. Можно ли различить невооруженным глазом два находящихся на расстоянии 5 км столба, отстоящих друг от друга на 1 м? Диаметр зрачка принять равным 4 мм.

19. В зрительную трубу рассматривается лунная поверхность. Диаметр объектива трубы d =4,00 см. При каком минимальном расстоянии a min между двумя кратерами их можно увидеть раздельно? Длину световой волны принять равной 600нм.

20. Пластинку кварца толщиной d =2 мм поместили между параллельными призмами Николя, в результате чего плоскость поляризации монохроматического света повернулась на угол j=53°. Какой наименьшей толщины следует взять пластинку, чтобы поле зрения поляризатора стало совершенно темным?

 

Решение задачи:

 

21. Параллельный пучок света переходит из глицерина в стекло так, что пучок, отраженный от границы раздела этих сред, оказывается максимально поляризованным. Определить угол j между падающим и преломленным пучками.

Решение задачи:

22. Угол a между плоскостями пропускания поляроидов равен 50°. Естественный свет, проходя через такую систему, ослабляется в п =8 раз. Пренебрегая потерей света при отражении, определить коэффициент поглощения k света в поляроидах.

Решение задачи:

23. На поверхность металла падает монохроматический свет с длиной волны l=0,1 мкм. Красная граница фото эффектаlo = 0,3 мкм. Какая доля энергии фотона расходуется на сообщение электрону кинетической энергии?

Решение задачи:


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: