Частица в одномерной прямоугольной потенциальной яме бесконечной глубины. Квантование энергии. Принцип соответствия Бора

Рассмотрим движение микрочастицы вдоль оси х в потенциальном поле.

Такое потенциальное поле соответствует бесконечно глубокой потенциальной яме с плоским дном. Примером движения в потенциальной яме является движение электрона в металле. Но для выхода электрона из металла необходимо совершить работу, что и соответствует потенциальной энергии в уравнении Шредингера.

При таком условии частица не проникает за пределы "ямы", т.е.

y(0)= y(l)=0 В пределах ямы (0<x<l) уравнение сведется к уравнению

или данное уравнение является диференциальным уравнением и согласно математике его решение является , где можно определить из граничных условий.

 

n-главное квантовое число n=1,2,3…

Анализ этого уравнения показывает, что в потенциальной яме энергия не может быть дискретной величиной.

состояние с min энергией называется основным, все остальные возбужденные.

Рассмотрим т.к. потенциальная яма одномерна, то можно записать, что , в место подставим в выражение и получим . По скольку одномерная потенциальная яма с плоским дном, то

Графически изобразим

Из рисунка видно, что вероятность пребывания микрочастицы в разных местах отрезка неодинакова, с увеличением n вероятность нахождения частицы увеличивается

Квантование энергии является одним из ключевых принципов, необходимых для понимания структурной организации материи, т.е. существования стабильных, повторяющихся в своих свойствах, молекул, атомов и более мелких структурных единиц, из которых состоит как вещество, так и излучение.

Принцип квантования энергии гласит, что любая система взаимодействующих частиц, способная образовывать стабильное состояние — будь то кусок твердого тела, молекула, атом или атомное ядро, — может сделать это только при определенных значениях энергии.

В квантовой механике принципом соответствия называется утверждение о том, что поведение квантовомеханической системы стремится к классической физике в пределе больших квантовых чисел. Этот принцип ввёл Нильс Бор в 1923 году.

Правила квантовой механики очень успешно применяются в описании микроскопических объектов, типа атомов и элементарных частиц. С другой стороны, эксперименты показывают, что разнообразные макроскопические системы (пружина, конденсатор и т.д) можно достаточно точно описать в соответствии с классическими теориями, используя классическую механику и классическую электродинамику (хотя существуют макроскопические системы, демонстрирующие квантовое поведение, например, сверхтекучий жидкий гелий или сверхпроводники). Однако, весьма разумно полагать, что окончательные законы физики должны быть независимыми от размера описываемых физических объектов. Это предпосылка для принципа соответствия Бора, который утверждает, что классическая физика должна появиться как приближение к квантовой физике, поскольку системы становятся большими.

Условия, при которых квантовая и классическая механики совпадают, называются классическим пределом. Бор предложил грубый критерий для классического предела: переход происходит, когда квантовые числа, описывающие систему являются большими, означая или возбуждение системы до больших квантовых чисел, или то, что система описана большим набором квантовых чисел, или оба случая. Более современная формулировка говорит, что классическое приближение справедливо при больших значениях действия


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: