Неинерциальные системы отсчета. Силы инерции

Неинерциа́льная систе́ма отсчёта — система отсчёта, к которой не применим первый закон Ньютона — «закон инерции», говорящий о том, что каждое тело, в отсутствие действующих на него сил, движется по прямой и с постоянной скоростью. Для согласования сил и ускорений в неинерциальной системе отсчёта, перечень действующих на тела сил можно дополнить силами инерции. Всякая система отсчета, движущаяся с ускорением или поворачивающаяся относительно инерциальной, является неинерциальной.

Законы Ньютона выполняются только в инерциальных системах отсчёта. Для того, чтобы найти уравнение движения в неинерциальной системе отсчёта, нужно знать законы преобразования сил и ускорений при переходе от инерциальной системы к любой неинерциальной.

Си́ла ине́рции (также инерционная сила) — многозначное понятие, применяемое в механике по отношению к трём различным физическим величинам. Одна из них — «даламберовасила инерции» — вводится в инерциальных системах отсчёта для получения формальной возможности записи уравнений динамики в виде более простых уравнений статики. Другая — «эйлерова сила инерции» — используется при рассмотрении движения тел в неинерциальных системах отсчёта. Наконец, третья — «Ньютонова сила инерции» — сила противодействия, рассматриваемая в связи с третьим законом Ньютона.

Общим для всех трёх величин является их векторный характер и размерность силы. Кроме того, первые две величины объединяет возможность их использования в уравнениях движения, по форме совпадающих с уравнением второго закона Ньютона.

 


 

Билет N25

1. Уравнение любой волны есть решение некоторого дифференциального уравнения, называемого волновым. Найдем общий вид волнового уравнения. Для этого продифференцируем дважды уравнение плоской волны по времени t и всем координатам:

(5.6.1)

(5.6.2)

Сложим уравнения (5.6.2):

 

Подставим из (5.6.1) значение , и получим:

. Учтем, что , а окончательно получим для волнового уравнения

Длина волны λ − путь, пройденный возмущением (состоянием с определённой фазой) за время равное периоду колебаний T

λ = vT.

ВОЛНОВОЙ ВЕКТОР - вектор k, определяющий направление распространения и пространственный период плоской монохроматич. волны

где - постоянные амплитуда и фаза волны, - круговая частота, r - радиус-вектор. Модуль В. в. наз. волновым числом k=, где - пространственный период или длина волны

2. Второе начало термодинамики — физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами.

Второе начало термодинамики гласит, что невозможен самопроизвольный переход тепла от тела, менее нагретого, к телу, более нагретому.

Энтропия — функция состояния системы, равная в равновесном процессе количеству теплоты, сообщённому системе или отведённому от системы, отнесённому к термодинамической температуре системы.

Энтропия — функция, устанавливающая связь между макро- и микро- состояниями; единственная функция в физике, которая показывает направленность процессов.

Энтропия — функция состояния системы, которая не зависит от перехода из одного состояния в другое, а зависит только от начального и конечного положения системы.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: