Агрегатное состояние вещества

Любое вещество состоит из молекул, а его физические свойства зависят от того, каким образом упорядочены молекулы и как они взаимодействуют между собой. В обычной жизни мы наблюдаем три агрегатных состояния вещества — твердое, жидкое и газообразное.

Газ расширяется, пока не заполнит весь отведенный ему объем. Если рассмотреть газ на молекулярном уровне, мы увидим беспорядочно мечущиеся и сталкивающиеся между собой и со стенками сосуда молекулы, которые, однако, практически не вступают во взаимодействие друг с другом. Если увеличить или уменьшить объем сосуда, молекулы равномерно перераспределятся в новом объеме.Молекулярно-кинетическая теория связывает молекулярные свойства газа с его макроскопическими свойствами, такими как температура и давление.

В отличие от газа жидкость при заданной температуре занимаетфиксированный объем, однако и она принимает форму заполняемого сосуда — но только ниже уровня ее поверхности. На молекулярном уровне жидкость проще всего представить в виде молекул-шариков, которые хотя и находятся в тесном контакте друг с другом, однако имеют свободу перекатываться друг относительно друга, подобно круглым бусинам в банке. Налейте жидкость в сосуд — и молекулы быстро растекутся и заполнят нижнюю часть объема сосуда, в результате жидкость примет его форму, но не распространится в полном объеме сосуда.

Твердое тело имеет собственную форму, не растекается по объему контейнера и не принимает его форму. На микроскопическом уровне атомы прикрепляются друг к другу химическими связями, и их положение друг относительно друга фиксировано. При этом они могут образовывать как жесткие упорядоченные структуры — кристаллические решетки, — так и беспорядочное нагромождение — аморфные тела (именно такова структура полимеров, которые похожи на перепутанные и слипшиеся макароны в миске).

Выше были описаны три классических агрегатных состояния вещества. Имеется, однако, и четвертое состояние, которые физики склонны относить к числу агрегатных. Это плазменное состояние. Плазма характеризуется частичным или полным срывом электронов с их атомных орбит, при этом сами свободные электроны остаются внутри вещества. Таким образом, плазма, будучи ионизированной, в целом остается электрически нейтральной, поскольку число положительных и отрицательных зарядов в ней остается равным. Мы можем наблюдать как холодную и в незначительной степени ионизированную плазму (например, в люминесцентных лампах), так и полностью ионизированную горячую плазму (внутри Солнца, например).

При сверхнизких температурах скорости молекул снижаются настолько, что мы не можем точно определить их местоположение. Это происходит в силу принципа неопределенности Гейзенберга. Когда температура снижается настолько, что степень неопределенности положения атомов оказывается сопоставимой с размерами группы атомов, к которой они принадлежат, вся группа начинает вести себя, как единое целое. Такое состояние вещества называется конденсатом Бозе—Эйнштейна, и его можно считать пятым агрегатным состоянием вещества.

14Особенности газообразного состояния вещества

Известно, что свойства вещества зависят от движения его молекул и от сил взаимодействия между ними. При этом силы молекулярного взаимодействия стремяться удержать молекулы на определенных расстояниях друг от друга, а хаотическое движение молекул, напротив, разбрасывает их по всему пространству, способствуя увеличению объема, занятого веществом. Совместное действие этих двух факторов определяет форму и объем тела.

 

Молекулы газа разлетаются по всему предоставленному для него объему, поэтому главную роль в поведении газа играет хаотическое движение его молекул, а силы взаимодействия между молекулами газа так малы, что ими можно пренебречь. Это означает, что в огромном большинстве случаев расстояние между молекулами газа значительно превышает радиус молекулярного действия. Если вокруг молекулы описать сферическую поверхность, радиус которой равен радиусу молекулярного действия, то ограниченное этой поверхностью пространство называют сферой молекулярного действия. Следовательно, с любой молекулой взаимодействуют только те молекулы, центры которых находятся внутри этой сферы.

 

Подсчет показывает, что среднее расстояние между молекулами газа при нормальных условиях составляет около 30 Ангстрем (1 Ангстрем =10-10 м), а радиус молекулярного действия равен приблизительно 10 Ангстрем. Следовательно, если в какой-либо момент времени вокруг всех молекул газа описать сферы молекулярного действия, то в большинстве случаев внутри этих сфер других молекул не окажется. Это означает, что молекулы газа движутся равномерно и прямолинейно (по инерции), пока не столкнутся с другими молекулами. При столкновении меняются величина и направление скорости движения молекулы, и молекула снова движется с постоянной скоростью до следующего столкновения. Если молекула состоит из нескольких атомов, то при столкновениях она приобретает еще и вращательное движение. Итак, тепловое движение молекул газа представляет собой поступательное и вращательное движение.

 

Отметим, что атомы внутри молекулы могут совершать еще и колебательное движение, однако при низких и средних температурах его роль незначительна, и только при очень высоких температурах колебательное движение атомов в молекулах газа вносит заметный вклад в тепловое движение.

Характерной особенностью газообразного состояния вещества является то, что между его молекулами практически отсутствуют силы взаимного притяжения. Лишь при столкновениях эти силы на короткое мгновение возникают, но в каждый момент времени взаимодействующие молекулы составляют ничтожную часть общего числа молекул (если газ не сильно сжат).

 

15 Молекулярно-кинетическая теория

(сокращённо МКТ) — теория, возникшая в XIX веке и рассматривающая строение вещества, в основном газов, с точки зрения трёх основных приближенно верных положений:

· все тела состоят из частиц: атомов, молекул и ионов;

· частицы находятся в непрерывном хаотическом движении (тепловом);

· частицы взаимодействуют друг с другом путём абсолютно упругих столкновений.

МКТ стала одной из самых успешных физических теорий и была подтверждена целым рядом опытных фактов. Основными доказательствами положений МКТ стали:

· Диффузия

· Броуновское движение

· Изменение агрегатных состояний вещества

На основе МКТ развит целый ряд разделов современной физики, в частности, физическая кинетика и статистическая механика. В этих разделах физики изучаются не только молекулярные (атомные или ионные) системы, находящиеся не только в «тепловом» движении, и взаимодействующие не только через абсолютно упругие столкновения. Термин же молекулярно-кинетическая теория в современной теоретической физике уже практически не используется, хотя он встречается в учебниках по курсу общей физики.

Началом становления МКТ послужила теория М. В. Ломоносова[1][2]. Ломоносов опытным путём опроверг теории о теплороде и флогистоне, подготовив тем самым, молекулярно-кинетическую теорию XIX века Рудольфа Клаузиуса, Людвига Больцмана иДжеймса Максвелла.

Основное уравнение МКТ

P= 1/3*m0*n*v^2, где k является постоянной Больцмана (отношение универсальной газовой постоянной R к числу Авогадро NA), i — число степеней свободы молекул ( в большинстве задач про идеальные газы, где молекулы предполагаются сферами малого радиуса, физическим аналогом которых могут служить инертные газы), а T - абсолютная температура.

Основное уравнение МКТ связывает макроскопические параметры (давление, объём, температура) газовой системы с микроскопическими (масса молекул, средняя скорость их движения).

 

Стехиометрия

(от др.-греч. «элемент» + «измерять») — раздел химии о соотношениях реагентов вхимических реакциях.Позволяет теоретически вычислять необходимые массы и объёмы реагентов.В основе стехиометрии лежат законы сохранения массы, эквивалентов, Авогадро, Гей-Люссака, постоянства состава, кратных отношений. Все законы стехиометрии обусловлены атомно-молекулярным строением вещества.

Термин "стехиометрия" ввёл И. Рихтер в 1793 году.Отношения количеств реагентов, равные отношениям коэффициентов в стехиометрическом уравнении реакции, называются стехиометрическими. Если вещества реагируют в соотношении 1:1, то их соответственные количества называют эквимолярными.

Вещества, для которых наблюдаются отклонения от законов стехиометрии, наз. нестехиометрическими. Отклонения от законов стехиометрии наблюдаются для конденсированных фаз и связаны с образованием твердых растворов (для кристаллических веществ), с растворением в жидкости избытка компонента реакции или термической диссоциацией образующегося соединения (в жидкой фазе, в расплаве). Законы стехиометрии используют в расчетах, связанных с формулами веществ и нахождением теоретически возможного выхода продуктов реакции.

Изопроцессы идеального газа – процессы, при которых один из параметров остаётся неизменным.

1. Изохорический процесс. Закон Шарля. V = const.

Изохорическим процессом называется процесс, протекающий при постоянном объёме V. Поведение газа при этом изохорическом процессе подчиняется закону Шарля:

При постоянном объёме и неизменных значениях массы газа и его молярной массы, отношение давления газа к его абсолютной температуре остаётся постоянным: P/Т = const.

График изохорического процесса на РV -диаграмме называется изохорой. Полезно знать график изохорического процесса на РТ - и VT -диаграммах (рис. 1.6). Уравнение изохоры:

    (1.4.1)


Рис. 1.6

Если температура газа выражена в градусах Цельсия, то уравнение изохорического процесса записывается в виде

    (1.4.2)

где Р0 – давление при 0 °С, α - температурный коэффициент давления газа равный 1/273 град-1. График такой зависимости на Рt -диаграмме имеет вид, показанный на рисунке 1.7.


Рис. 1.7

2. Изобарический процесс. Закон Гей-Люссака. Р = const.

Изобарическим процессом называется процесс, протекающий при постоянном давлении Р. Поведение газа при изобарическом процессе подчиняется закону Гей-Люссака:

При постоянном давлении и неизменных значениях массы и газа и его молярной массы, отношение объёма газа к его абсолютной температуре остаётся постоянным: V/T = const.

График изобарического процесса на VT -диаграмме называется изобарой. Полезно знать графики изобарического процесса на РV - и РT -диаграммах (рис. 1.8).


Рис. 1.8

Уравнение изобары:

  .   (1.4.3)

Если температура газа выражена в градусах Цельсия, то уравнение изобарического процесса записывается в виде

    (1.4.4)

где α =1/273 град -1- температурный коэффициент объёмного расширения. График такой зависимости на Vt диаграмме имеет вид, показанный на рисунке 1.9.


Рис. 1.9

3. Изотермический процесс. Закон Бойля – Мариотта. T = const.

Изотермическим процессом называется процесс, протекающий при постоянной температуре Т.

Поведение идеального газа при изотермическом процессе подчиняется закону Бойля – Мариотта:

При постоянной температуре и неизменных значениях массы газа и его молярной массы, произведение объёма газа на его давление остаётся постоянным: PV = const.

График изотермического процесса на РV -диаграмме называется изотермой. Полезно знать графики изотермического процесса на VT - и РT -диаграммах (рис. 1.10).


Рис. 1.10

Уравнение изотермы:

    (1.4.5)

4. Адиабатический процесс (изоэнтропийный):

Адиабатический процесс – термодинамический процесс, происходящий без теплообмена с окружающей средой.

5. Политропический процесс. Процесс, при котором теплоёмкость газа остаётся постоянной. Политропический процесс – общий случай всех перечисленных выше процессов.

6. Закон Авогадро. При одинаковых давлениях и одинаковых температурах, в равных объёмах различных идеальных газов содержится одинаковое число молекул. В одном моле различных веществ содержится NA =6,02·1023 молекул (число Авогадро).

7. Закон Дальтона. Давление смеси идеальных газов равно сумме парциальных давлений Р, входящих в неё газов:

    (1.4.6)

Парциальное давление Pn – давление, которое оказывал бы данный газ, если бы он один занимал весь объем.

При , давление смеси газов:

    (1.4.7)

8. Объединённый газовый закон (Закон Клапейрона).

В соответствии с законами Бойля – Мариотта (1.4.5) и Гей-Люссака (1.4.3) можно сделать заключение, что для данной массы газа

 

17Закон Авогадро (А. Авогадро, 1811)


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow