Экзаменационный билет № 8

1. Основные законы химии (сохранения массы, постоянства состава, эквивалентов, Авогадро), границы их применимости.

2. Типы электродов: I, II рода, окислительно-восстановительные электроды. Электроды сравнения.

Ответ:

Закон сохранения массы веществ: Масса реагирующих веществ равна массе продуктов реакции.

В химической реакции число взаимодействующих атомов остается неизменным, происходит только их перегруппировка с разрушением исходных веществ. Взаимодействие водорода и кислорода с образованием воды может быть записано с помощью уравнения химической реакции

Коэффициенты перед формулами химических соединений называются стехиометрическими.

Закон постоянства состава (Ж. Пруст): Химическое соединение, имеющее молекулярное строение, независимо от метода получения характеризуется постоянным составом.

Такие соединения называют дальтонидами или стехиометрическими в отличие от бертолидов, состав которых зависит от способа получения. Такие соединения состоят не из молекул, а из атомов или ионов.

Закон эквивалентов (И. Рихтер): В молекулярных соединениях массы составляющих их элементов относятся между собой как их эквиваленты.

Химический эквивалент – реальная или условная частица вещества, способная соединиться и заместить 1 моль атомов водорода в реакциях присоединения и замещения или принять (отдать) 1 моль электронов в окислительно-восстановительных реакциях.

Закон Авогадро: В равных объемах любых газов, взятых при одинаковых условиях, содержится одинаковое число молекул.

Из закона Авогадро вытекают два следствия:

1. Одинаковое число молекул любых газов при одинаковых условиях занимают одинаковый объем.

2. Относительная плотность одного газа по другому равна отношению их молярных масс.

Число Авогадро – число частиц в моле любого вещества; NA = 6,02•1023 моль–1.

Молярный объем – объем моля любого газа при нормальных условиях(температура 273 К, давление 101,3 кПа); равен 22,4 л•моль–1.

Молярная масса (M) – масса одного моля вещества, численно совпадающая с относительными массами атомов, ионов, молекул, радикалов и других частиц, выраженных в г•моль–1.

К электродам первого рода относятся электроды, в уравнение Нернста которых под знаком логарифма входят активности веществ, участвующих в электродной реакции. Потенциал таких электродов меняется с изменением концентрации реагентов.

Электродами первого рода являются:

1. Электроды, состоящие из элементарного вещества, находящегося в контакте с раствором, содержащим его собственные ионы.

а) Металлический электрод – металл, погруженный в раствор своей соли M|Mn+, например, цинковый и медный электроды:

Металлический электрод обратим по отношению к катиону. Его электродный потенциал

б) Газовый электрод в качестве одного из компонентов электродной пары содержит газ (H2, Cl2 и др.), адсорбированный на химически инертном проводнике первого рода (обычно платина, покрытая платиновой чернью). При контакте адсорбированного газа с раствором собственных ионов устанавливается равновесие. Для хлорного и водородного электродов это равновесие можно представить уравнениями:

Соответствующие им уравнения Нернста имеют вид:

Очевидно, что их электродный потенциал зависит от давления и активности (концентрации) ионов в растворе.

2. Редокс-электроды состоят из электрохимически инертного проводника (платины, графита и т. д.), погруженного в раствор, в котором находятся окисленная и восстановленная формы потенциалопределяющего вещества. Такой инертный проводник способствует передаче электронов от восстановителя к окислителю через внешнюю цепь. Примерами таких электродов могут служить редокс-электроды с ионами в различных степенях окисления: (Pt)Sn4+, Sn2+, (Pt)Fe3+, Fe2+.

Электроды второго рода представляют собой металлические электроды, покрытые слоем труднорастворимой соли того же металла. При погружении в раствор соли одноименного аниона его потенциал будет определяться активностью иона в растворе.

а) Хлорсеребряный электрод (ХСЭ) Ag, AgCl|Cl– представляет собой серебряный проводник, покрытый твердым AgCl, который погружен в насыщенный раствор KCl.

Серебро электрохимически взаимодействует со своим ионом:

Ag+ + e– = Ag.

б) Каломельный электрод (КЭ) Hg, Hg2Cl2|Cl– – это ртуть, находящаяся в контакте с пастой из смеси ртути и каломели Hg2Cl2, которая, в свою очередь, соприкасается с насыщенным раствором KCl.

Принцип действия каломельного электрода тот же, что и хлорсеребряного.

Электродная реакция сводится к восстановлению каломели до металлической ртути:

Потенциал каломельного электрода определяется активностью ионов хлора:

Ионоселективные электроды (ИСЭ), чувствительные к катионам и анионам, представляют собой электрохимические системы, в которых потенциал определяется процессами распределения ионов между мембраной и раствором.

Мембрана разделяет два раствора (исследуемый и стандартный), содержащие ионы, способные проникнуть в мембрану и двигаться в ней. Стандартный раствор содержит только один вид мембраноактивных ионов A+. Состав стандартного раствора неизменен. В настоящее время широко применяются ИСЭ с четко выраженной избирательностью к большому числу катионов и анионов.

Наиболее распространенными ИСЭ являются стеклянные электроды. Стекло рассматривается как твердый электролит, способный вступать в ионное взаимодействие с раствором. Стекла, содержащие катионы Na, Li, Ca, обладают сродством к ионам, введением в состав стекла оксидов Al и B удалось создать ИСЭ для ионов,, Li+, Ag+, Tl+ и др.

Стеклянный электрод для определения концентрации состоит из стеклянного тонкостенного шарика, припаянного к стеклянной трубке. В шарик налит раствор HCl (внутренний раствор, моль•л–1), в который опущен хлорсеребряный электрод. При погружении стеклянного электрода в раствор с измеряемой концентрацией H+ (внешний раствор) между мембраной и исследуемым раствором (р) происходят процессы ионного обмена:

приводящие к разности потенциалов.

Стеклянные электроды обычно используют для определения pH.

Водородный электрод, выбранный за нулевую точку при сравнении электродных потенциалов, в качестве рабочего электрода сравнения практически не используется. Это связано со многоми конструкциоными, технологическими и эксплуатационными трудностями: газообразный водород очень критичен даже к малейшим примесям, его давление должно строго соответствовать 100 кПа, а активность ионов водорода в растворе – строго соответствовать единице, поверхность платинового электрода должна быть чистой и сохранять каталитические свойства в течение долгого времени. Поэтому в качестве электродов сравнения обычно используют лишенные этих неудобств электроды второго рода; чаще других хлорсеребряный (ХСЭ) и каломельный (КЭ), так как при постоянной концентрации ионов хлора их потенциалы остаются постоянными. Кроме ХСЭ и КЭ очень удобным в работе оказался стеклянный электрод.

Если гальванический элемент составлен из полуэлементов сравнения, то он обладает высокой стабильностью, его ЭДС не меняется многие годы.


 

 

РЕШЕНИЕ

 

Дано: V = 1 л m(С3Н8О3) = 18,4 г М(С3Н8О3) = 92,09 г/моль R = 8,314 Дж/моль×К Т = 0ºС = 273 К π =? Осмотическое давление неэлектролита в растворе можно вычислить исходя из формулы Вант-Гоффа: , где C — молярная концентрация раствора, выраженная через моль/м3; R — универсальная газовая постоянная, 8,314 Дж/моль×К, 8,314; T —температура раствора, К. Так как , то отсюда получим, что . Используя данную формулу, вычислим осмотическое давлениепри 0 ºС раствора, содержащего в 1 л18,4 г глицерина С3Н8О3:    
Ответ: π = 453500 Па

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: