Псевдоосжиженный слой.Общие понятия, область применения

 

За последние два десятилетия значительное применение в химической и других отраслях промышленности получили процессы, связанные с взаимодействием газов (реже — капельных жидкостей) со слоем мелкораздробленных твердых частиц, находящихся в кипящем, или псевдоожиженном состоянии. Аппараты с кипящим слоем используются для пере­мещения и смешивания сыпучих материалов, для проведения процессов обжига, теплообмена, сушки, адсорбции, каталитических и других про­цессов. Такое широкое распространение процессов в кипящем слое обус­ловлено рядом их преимуществ. Здесь отметим только, что псевдоожижению подвергаются частицы значительно меньших разме­ров, чем частицы материалов, находящихся в неподвижном слое. Гидрав­лическое сопротивление кипящего слоя при этом относительно невелико, а уменьшение размеров частиц приводит к увеличению поверхности их контакта с потоком и снижает сопротивление диффузии внутри частиц при взаимодействии между твердой и газовой (или жидкой) фазами. В ре­зультате возрастает скорость протекания многих процессов.

Закономерности движения жидкости через зернистые слои, рассмотренные выше, соблюдаются практически при любых скоростях потока лишь при движении его сверху вниз. Когда поток движется снизу вверх, эти закономерности применимы лишь при условии, что скорость потока не превышает такого значения, при котором неподвижность слоя нару­шается.

На рис. 1 показаны три возможных состояния слоя твердых частиц в зависимости от скорости восходящего потока.

Рис. 1. Движение газа (жидкости) через слой твердых частиц: а – неподвижный слой; б – кипящий (псевдоожиженный слой); в – унос твердых частиц потоком.

При относительно небольших скоростях зернистый слой остается непо­движным (рис. 1а), и его характеристики (удельная поверхность, порозность и т. д.) не меняются с изменением скорости потока. Жидкость при этом просто фильтруется через слой. Однако, когда скорость достигает некоторой критической величины, слой перестает быть неподвижным, его порозность и высота начинают увеличиваться, слой приобретает текучесть и переходит как бы в кипящее (псевдоожиженное) состояние. В таком слое твердые частицы интенсивно перемещаются в потоке в различных направлениях (рис. 1б), и весь слой напоминает кипящую жидкость, Ограниченную ясно выраженной верхней границей раздела с потоком, прошедшим слой. При дальнейшем увеличении скорости потока порозность слоя и его высота продолжают возрастать вплоть до того момента, когда скорость достигает нового критического значения, при кото­ром слой разрушается и твердые частицы начинают уноситься потоком (рис 1в).Явление массового уноса твердых частиц потоком газа называют пневмотранспортом и используют в промышлен­ности для перемещения сыпучих материалов.

Скорость началапсевдоожижения

Взаимосвязь между критической скоростью газа и размером частиц твердого материала определяет конструктивные размеры аппарата, его производительность и другие показатели технологическогопроцесса.

Для слоев, состоящих из зерен, форма которых близка к шарообразной,

средняя порозность может быть принята равной ε= 0,4. В этом случае скорость начала псевдоожиженияWкрможноопределитьпоформуле:

 

 

где Ar – критерий Архимеда, началу псевдоожижения частиц.Reкркритерий Рейнольдса, соответствующий началу псевдоожижения частиц.При расчете скорости начала псевдоожижения с помощью этогоуравнения вычисляетсязначениекритерияАрхимедаповыражению,

затем находят величинуReкр1и поней рассчитываютвеличинуWкр

Уравнение позволяет достаточно точно определить критическую

скоростьWкрпри однородномпсевдоожижениислоя частиц. При неоднородномпсевдоожижении твердого материала газами уравнение дает погрешность± 30%.

 

Скорость витания(уноса)

Скорость газового потока, при которой гидродинамическое давление, создаваемое потоком на поверхности единичной твёрдой частицы, становится равным её весу, называется скоростью витания. Когда скорость потока превысит скорость витания, начинается совместное восходящее движение газового потока и твёрдой частицы. При достижении порозности слоя ε ≈ 1 частицы уносятся из аппарата, т.е. наступает режим пневмотранспорта зернистогоматериала.

Для расчета скорости осаждения (витания) может быть использована зависимость, связывающая критерии Re и Ar для всех гидродинамических режимов:

 

При малых значениях Ar вторым слагаемым в знаменателе можно пренебречь, и уравнение (1.3) превращается взависимость:

соответствующую области действия закона Стокса (вязкостная зона). При больших значениях критерия Ar можно пренебречь первым слагаемым в знаменателе, и уравнение (1.3) превращается в уравнение (1.5), отвечающее инерционнойобласти:

 

Скорость уноса (осаждения) частиц неправильной формы меньше, чем скорость уноса (осаждения) шарообразных зерен. Для расчета скорости уноса частиц неправильной формы необходимо учитывать коэффициент формы j. Кроме того, в соответствующее уравнение при расчете скорости витания нешаровых частиц следует подставлять эквивалентный диаметршара.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: