Кислородный этап эволюции – дыхание, его сущность. Роль кислорода в эволюции биоты и биосферы

Накопление в атмосфере свободного кислорода привело к коренному преобразованию условий жизни на Земле. К моменту появления первых живых организмов Земля сильно остывает, снижается количество грозовых разрядов в атмосфере, затухает вулканическая деятельность. Практически единственным источником энергии для абиогенного синтеза органических веществ является ультрафиолетовое излучение Солнца.

С появлением кислорода в верхних слоях атмосферы, на высоте 15-30 км, сформировался озоновый экран, защитивший живые организмы от губительного действия ультрафиолетового излучения, что послужило предпосылкой возникновения жизни не только в воде, но и на суше. Одновременно озоновый экран, снизив интенсивность падающего на Землю ультрафиолетового излучения, практически остановил абиогенный синтез органических веществ, вследствие чего дальнейшее существование жизни на Земле стало полностью зависеть от дея тельности фотосинтезирующих организмов.

Фотосинтезирующие бактерии, в первую очередь цианобактерии, и в настоящее время широко распространенная и процветающая группа живых организмов. «Цветение» воды в конце лета обусловлено главным образом бурным развитием циано- бактерий. Они способны не только к автотрофному питанию путем фотосинтеза, но и к гетеротрофному питанию готовыми органическими веществами. Поэтому загрязнение водоемов органическими веществами под воздействием хозяйственной деятельности человека создает благоприятные условия для развития цианобактерий (сине-зеленых водорослей), которые, бурно размножаясь, вытесняют эукариотические водоросли, что снижает продуктивность водоемов, приводя к гибели планктонных организмов и рыб.

Как отмечалось ранее, главный (целевой) продукт фотосинтеза — богатые энергией органические вещества, которые используются живыми организмами как для построения своего чела, так и для получения необходимой для их жизнедеятельности энергии, кислород же является побочным продуктом фотосинтеза. Поэтому для наиболее древних но происхождению живых организмов — бактерий-анаэробов и первых фотосинтезирующих бактерий кислород — это яд. Однако вслед за фотосинтезирующими бактериями на Земле появились живые организмы, которые научились не только защищаться от кислорода, но и использовать его — научились дышать кислородом. Это были бактерии-аэробы (илибактерии-окислители).

Биологические преимущества кислородного дыхания очевидны: при кислородном окислении органических веществ из единицы (например, из 1 г) органических веществ можно извлечь в 19 раз больше энергии, чем при бескислородном дыхании. Вследствие этою бактерии-аэробы оказались способными значительно экономнее расходовать органические вещества, чем анаэробы, что, в свою очередь, позволило им существовать в условиях относительно низких концентраций органических веществ.

 

Сущность дыхания— окисление органических веществ в клетках с освобождением энергии, необходимой для процессов жизнедеятельности. Поступление необходимого для дыхания кислорода в клетки тела растений и животных: у растений через устьица, чечевички, трещины в коре деревьев; у животных — через поверхность тела (например, у дождевого червя), через органы дыхания (трахеи у насекомых, жабры у рыб, легкие у наземных позвоночных и человека). Транспорт кислорода кровью и поступление его в клетки различных тканей и органов у многих животных и человека.
2. Участие кислорода в окислении органических веществ до неорганических, освобождение при этом полученной с пищей энергии, использование ее во всех процессах жизнедеятельности. Поглощение кислорода организмом и удаление из него углекислого газа через поверхность тела или органы дыхания — газообмен.
3. Взаимосвязь строения и функций органов дыхания. Приспособленность органов дыхания, например у животных и человека, к выполнению функций поглощения кислорода и выделения углекислого газа: увеличение объема легких человека и млекопитающих животных за счет огромного числа легочных пузырьков, пронизанных капиллярами, возрастание поверхности соприкосновения крови с воздухом, повышение за счет этого интенсивности газообмена. Приспособленность строения стенок дыхательных путей к движению воздуха при вдохе и выдохе, очищению его от пыли (реснитчатый эпителий, наличие хрящей).
4. Газообмен в легких. Обмен газов в организме путем диффузии. Поступление в легкие по артериям малого круга кровообращения венозной крови, содержащей небольшое количество кислорода и большое количество углекислого газа. Проникновение в плазму венозной крови кислорода из легочных пузырьков и капилляров путем диффузии через их тонкие стенки, а затем в эритроциты. Образование непрочного соединения кислорода с гемоглобином — оксигемоглобина. Постоянное насыщение плазмы крови кислородом и одновременное выделение из крови в воздух легких углекислого газа, превращение венозной крови в артериальную.
5. Газообмен в тканях. Поступление по большому кругу кровообращения артериальной, насыщенной кислородом и бедной углекислым газом крови в ткани. Поступление кислорода в межклеточное вещество и клетки тела, где его концентрация значительно ниже, чем в крови. Одновременное насыщение крови углекислым газом, превращение ее из артериальной в венозную. Транспорт углекислого газа, образующего непрочное соединение с гемоглобином, в легкие.

Кислород — сильный окислитель и губителен для анаэробных (живущих в бескислородной среде) организмов. Поэтому для живых организмов того времени он был сильным ядом. Практически кислород стал загрязнителем атмосферы, что привело к экологическому кризису. Живые организмы должны были погибнуть или приспособиться к новым условиям среды. У них стали появляться различные механизмы обезвреживания ядов. Некоторые из них выполняют у современных живых организмов совершенно иные функции. Например, ученые считают, что биохимический механизм, при помощи которого светлячок вырабатывает световую энергию, появился у древних организмов как средство обезвреживания губительного воздействия кислорода. В конечном итоге природн ни пит наиболее рациональный путь решения э,той проблемы. Живые организмы уже не боролись против кислорода, а использовали его для получения энергии. Появился процесс дыхания.
Фотосинтез сыграл огромную роль в развитии органического мира и эволюции биосферы.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: