Соматовисцеральная чувствительность. Проприорецепторы

Соматовисцеральная система перерабатывает сенсорную информацию нескольких модальностей, получая ее от кожи, мышц, суставов, внутренних органов и кровеносных сосудов. Она содержит разные типы рецепторов: механорецепторы, терморецепторы, хеморецепторы, осморецепторы, ноцицепторы. Общим для всех этих модальностей является то, что их рецепторы не собраны в обособленный орган, а, как правило, рассеяны по всему телу; кроме того, их афферентные волокна не образуют специальных нервов, а распределены по многим периферическим нервам и центральным трактам.

Терморецепторы кожи: общие сведения

Когда температура кожи составляет 32 - 42оС, никаких температурных ощущений не возникает. Это, конечно, не означает, что изменения температуры в этом диапазоне не могут ощущаться. На самом деле, как мы увидим ниже, кожа очень чувствительна к резким изменениям температуры в этих пределах, однако, если она остается неизменной в этом диапазоне, то активность терморецепторов незначительна. Поэтому упомянутый диапазон и называется нейтральным. Вне пределов этого диапазона возникают ощущения холода или тепла. При температурах ниже 18оС ощущение холода становится болезненным, равно как ощущение тепла при температурах выше 45оС.

И "тепловые", и "холодовые" рецепторы лежат в толще кожи и чувствительны к температуре Уже давно известно, что они образуют мозаику тепловых и холодовых пятен, каждое диаметром около 1 мм. Это установлено с помощью термода - маленького игловидного инструмента, который можно нагревать электрическим током или пропуская через него воду. Наибольшая плотность этих термочувствительных пятен обнаружена в некоторых областях лица. В губах, например, 16-19 холодовых пятен на квадратный см, на носу - 8-13 на кв. см, а на лбу - 5-8 на кв. см. Напротив, на ладонях рук только 1-5 на на кв. см, а на пальцах - 2-4 пятна на кв. см. Тепловые пятна встречаются реже - 1,7 на кв. см на пальцах и 0,4 - на ладонях. Во многих частях тела они встречаются достаточно редко. Показано, что термочувствительные окончания, реагирующие на холод, локализованы в верхней части дермиса (около 0,17 мм ниже поверхности кожи), тогда как реагирующие на тепло - несколько глубже (около 0,3 мм)

Существует два типа кожных терморецепторов - холодовые и тепловые. Те и другие - медленно адаптирующиеся, хотя могут ответить фазическим разрядом на быстрые изменения температуры кожи (рис. 34.3, а).

Главными температурными рецепторами кожи являются, видимо, многочисленные свободные нервные окончания. В ней имеются также два типа рецепторов, отвечающих за температурную чувствительность - тельца Руффини, реагирующие на тепло, и колбочки Краузе, реагирующие на холод.

Терморецепторы относятся к небольшой группе рецепторов, обладающих спонтанной импульсацией в нормальных физиологических условиях. Они активны в широком диапазоне температур (рис. 34.3, б). При умеренной температуре кожи (примерно 35 градусов по Цельсию) могут быть активными одновременно холодовые и тепловые рецепторы. При согревании кожи импульсация холодовых рецепторов прекращается, и наоборот, при охлаждении замолкают тепловые рецепторы. Кроме того, тепловые рецепторы прекращают свой разряд, когда температура достигает болевого (повреждающего) уровня - выше 45 градусов по Цельсию. Следовательно, эти рецепторы не могут сигнализировать о боли, вызываемой сильным нагреванием.

Как показывают графики соотношения "стимул-реакция" для холодовых рецепторов (рис. 34.3, б), при средней частоте разряда их волокон ЦНС не может определять температурные различия выше или ниже пика кривой. Однако в определенном диапазоне температур холодовые рецепторы генерируют ответы в виде высокочастотных импульсных залпов (рис. 34.3, а). Эти разряды дают информацию, позволяющую ЦНС различать активность холодовых рецепторов, подвергающихся воздействию повышенных или пониженных температур. Кроме того, при снижении температуры кожи до определенного уровня активируется еще один класс холодовых рецепторов - высокопороговые. Большинство холодовых рецепторов обеспечиваются Aдельта-волокнами, а большинство тепловых - С-волокнами.

Основные свойства терморецепторов:

1. Постоянная импульсация при постоянных температурах кожи с частотой, пропорциональной температуре кожи.

2. Повышение или понижение частоты импульсации при изменении температуры кожи.

3. Нечувствительность к нетемпературным стимулам.

Механорецепторы

В эволюционном отношении механорецепторы очень стары, они вездесущи. Они функционируют различными путями, детектируя растяжение и прикосновение, даже еле уловимое колебание звуковых волн. Возможно, у них одна и та же молекулярная основа.

Механорецепторы, реагирующие на тактильные стимулы (прикосновение к коже или давление) бывают быстро или медленно адаптирующимися. К быстро адаптирующимся относятся рецепторы волосяных фолликулов волосистой части кожи, тельца Мейснера безволосой (голой) кожи и тельца Пачини подкожной ткани (рис. 34.2, а). Рецепторы волосяных фолликулов и тельца Мейснера предпочтительно отвечают на стимулы, поступающие с частотой примерно 30-40 Гц, тогда как тельца Пачини - на стимулы с частотой примерно 250 Гц. Медленно адаптирующиеся кожные механорецепторы - это диски Меркеля и тельца Руффини (рис. 34.2, б). Диски Меркеля имеют точечные рецептивные поля, а тельца Руффини активируются при растяжении кожи, причем даже на некотором расстоянии от рецептора. У всех этих рецепторов миелинизированные аксоны, большинство из которых принадлежит к группе Aбета, но один класс рецепторов волосяных фолликулов, рецептор опускания волоса, снабжен Aдельта-волокнами.

Механорецепторы группы С иннервируются немиелинизированными аксонами. Эти механорецепторы лучше всего реагируют на медленно двигающиеся стимулы, такие как поглаживание. Механорецеиторы группы С только недавно обнаружены у человека, хотя были известны у других млекопитающих, например у кошки.

Тактильная чувствительность

Механизмы возбуждения кожных рецепторов. Механический стимул приводит к деформации мембраны рецептора. В результате этого электрическое сопротивление мембраны уменьшается, увеличивается ее проницаемость для Na+. Через мембрану рецептора начинает течь ионный ток, приводящий к генерации рецепторного потенциала. При увеличении рецепторного потенциала до критического уровня деполяризации в рецепторе генерируются импульсы, распространяющиеся по волокну в ЦНС.

Часть соматовисцеральной системы, обеспечивающая чувство осязания, включает несколько разновидностей механорецепторов кожи, представленных свободными нервными окончаниями либо инкапсулированными, т. е. заключенными в капсулу из соединительной ткани или видоизмененных клеток эпидермиса (рис. 17.4). Свободные нервные окончания иннервируют волосяные фолликулы пушковых волос, покрывающих большую часть тела человека, а также грубых волос, растущих на голове, в подмышечных впадинах, на лобке, а у мужчин еще и на лице. Свободные нервные окончания волосяных фолликулов являются механоре-цепторами и возбуждаются при смещении волос или их подергивании. Другая разновидность свободных нервных окончаний имеется в эпидермисе и в сосочковом слое дермы, большинство из них являются ноцицепторами или терморецепторами, но некоторые принадлежат к механорецепторам, которые специфически реагируют на слабое околопороговое раздражение. Предполагается, что при раздражении этой разновидности рецепторов возникают ощущения щекотки и зуда.

Схема распределения механорецепторов в коже человека. Свободные нервные окончания имеют высокий порог раздражения и слабо реагируют на изменение интенсивности стимула. Быстро адаптирующиеся рецепторы (тельца Пачини, рецепторы волосяных фолликулов) служат датчиками скорости действующих стимулов, а медленно адаптирующиеся рецепторы (диски Меркеля, тельца Руффини) являются датчиками интенсивности действующего раздражителя. Наличие нескольких разновидностей рецепторов позволяет передавать афферентные сигналы о разных свойствах одного и того же раздражителя. Среди инкапсулированных окончаний различают тельца Пачини, Мейсснера, Руффини, диски Меркеля, тактильные тельца Пинкуса—Игго, колбы Краузе. В зависимости от строения и формы капсулы нервные окончания подвержены наиболее сильному воздействию либо в результате давления действующим перпендикулярно раздражителем, либо вследствие бокового смещения капсулы, которая играет роль механического преобразователя энергии внешних стимулов. Большинство инкапсулированных рецепторов содержится в лишенной волос коже пальцев рук и ног, ладоней и подошв, лица, губ, языка, сосков и половых органов, где они распределены с различной плотностью и на разной глубине. Тельца Пачини имеются также в сухожилиях, связках и брыжейке. Механорецепторы кожи различаются по скорости адаптации к действующему раздражителю. Быстроадаптирующиеся (фазные) рецепторы возбуждаются только в момент смещения кожи и волос и служат датчиками скорости воздействия стимула. Это свойство присуще тельцам Мейснера, рецепторам волосяных фолликулов и особенно тельцам Пачини, способным реагировать на изменения скорости продолжающего свое действие стимула. Медленно адаптирующиеся (тонические) рецепторы не прекращают генерировать потенциалы действия при продолжительном действии раздражителя, если он оказывает давление на кожу: такие рецепторы служат датчиками интенсивности действующего стимула (тельца Руффини, диски Меркеля).

Площадь рецептивных полей сенсорных нейронов, иннервирующих тельца Мейснера и диски Меркеля, составляет в среднем около 12 мм2, а у нейронов с окончаниями в виде телец Пачини и Руффини она на порядок больше. Рецептивные поля различающихся своими рецепторами сенсорных нейронов перекрываются, поэтому при действии на кожу комплекса стимулов одновременно возбуждаются разные виды рецепторов, что позволяет ощущать все динамические и статические свойства такого комплекса. Обработка и анализ информации сигналов от различных рецепторов происходит на высших уровнях сенсорной системы, формирующих комплексное восприятие действующих на поверхность тела стимулов. Плотность меха-норецепторов в разных участках кожи не одинакова, чем определяются разные показатели пространственного дифференциального порога, т. е. наименьшего расстояния между двумя точками, раздражение каждой из которых ощущается раздельно

Инкапсулированные рецепторы иннервируются миелинизированными волокнами первичных сенсорных нейронов, которые проводят нервные импульсы в ЦНС со скоростью около 30—70 м/с. Немиелинизированные волокна передают потенциалы действия от свободных нервных окончаний со значительно меньшей скоростью — около 1 м/с, поэтому ощущение действующего на них стимула возникает относительно позже. Ноцицепторы (болевые рецепторы)

Болевые рецепторы (ноцицепторы) реагируют на стимулы, угрожающие организму повреждением. Существуют два основных типа ноцицепторов: Aдельта-механоноцицепторы и полимодальные С-ноцицепторы (есть и еще несколько типов). Как следует из их названия, механоноцицепторы иннервируются тонкими миелинизированными, а полимодальные С-ноцицепторы - немиелинизированными С-волокнами. Aдельта-механоноцицепторы отвечают на сильное механическое раздражение кожи, например, укол иглой или щипок пинцетом. Обычно они не реагируют на термические и химические болевые стимулы, если только не были предварительно сенситизированы. В отличие от них полимодальные С-ноцицепторы реагируют на болевые стимулы разного вида: механические, температурные (рис. 34.4) и химические.

Многие годы было непонятно, возникает ли боль в результате активации специфических волокон или в результате сверхактивности сенсорных волокон, в норме имеющих другие модальности. Последняя возможность, как кажется, в большей степени соответствует нашему обыденному опыту. За возможным исключением обоняния, любые избыточные по интенсивности сенсорные стимулы - слепящий свет, рвущий ухо звук, тяжелый удар, тепло или холод за пределами нормального диапазона - приводят к возникновению боли. Такой взгляд здравого смысла был заявлен Эразмом Дарвином (Erasmus Darwin) в конце 18-го и Уильямом Джеймсом (William James) в конце 19-го века. Здравый смысл, однако, здесь (как и везде) оставляет желать чего-то еще. В настоящее время мало кто сомневается, что в большинстве случаев ощущение боли возникает в результате возбуждения специализированных ноцицептивных волокон. Ноцицептивные волокна не имеют специализированных окончаний. Они присутствуют в виде свободных нервных окончаний в дермисе кожи и в иных местах организма. Гистологически они неотличимы от C-механорецепторов (МЕХАНОЧУВСТВИТЕЛЬНОСТЬ) и C - и A-дельта терморецепторов (глава ТЕРМОЧУВСТВИТЕЛЬНОСТЬ). Они отличаются от упомянутых рецепторов тем, что порог для их адекватных стимулов выше нормального диапазона. Они могут подразделяться на несколько разных типов по критерию того, какая сенсорной модальность представляет для них адекватный стимул. Болезненные термические и механические стимулы детектируются миелинизированными волокнами малого диаметра, таблица 2.2 показывает, что они относятся к категории A дельта-волокон. Полимодальные волокна, которые отвечают на широкое разнообразие интенсивностей стимулов разной модальности, также имеет малый диаметр, но не миелинизированы. Таблица 2.2 показывает, что эти волокна относятся к классу С. A дельта-волокна проводят импульсы с частотой 5- 30 м/с и ответственны за "быструю" боль, острое колющее ощущение; С-волокна проводят медленнее - 0,5 - 2 м/с и сигнализируют о "медленной" боли, часто продолжительной и часто переходящей в глухую боль. АМТ (Механо-термо-ноцицепторы с А дельта-волокнами) делятся на два типа. АМТ типа 1 в основном обнаруживаются в неоволосенной коже. АМТ типа 2 находятся в основном в оволосенной коже Наконец, ноцицепторы с С-волокнами (СМT волокна) имеют порог в диапазоне 38оС - 50оС и отвечают постоянной активностью, которая зависит от интенсивности стимула (рис. 21.1а). АМТ и СМТ рецепторы, как показывают их названия, реагируют и на термические, и на механические стимулы. Физиологическая ситуация, тем не менее, далека от простоты. Механизм передачи этих двух модальностей различен. Аппликация капсайцина не влияет на чувствительность к механическим стимулам, но ингибирует ответ на тепловые. При этом, тогда как капсайцин имеет анальгетический эффект в отношении тепловой и химической чувствительности полимодальных С-волокон в роговице, на механочувствительности он не сказывается. Наконец, было показано, что механические стимулы, которые генерируют такой же уровень активности в СМТ-волокнах, что и термические, вызывают, тем не менее, меньшую боль. Возможно, неизбежно более широкая поверхность, задействованная тепловым стимулом, вовлекает активность большего количества СМТ-волокон, чем в случае механического стимула.

Сенситизация ноцицепторов (повышение чувствительности афферентных волокон рецепторов) происходит после их ответа на вредящий стимул. Сенситизированные ноцицепторы интенсивнее реагируют на повторный стимул, поскольку их порог снижен (рис. 34.4). При этом наблюдается гипералгезия - более сильная боль в ответ на стимул прежней интенсивности, а также снижение болевого порога. Иногда ноцицепторы генерируют фоновый разряд, вызывающий спонтанную боль.

Сенситизация происходит, когда вблизи от ноцицептивных нервных окончаний высвобождаются в результате повреждения или воспаления ткани такие химические факторы, как ионы К+, брадикинин, серотонин, гистамин, эйкозаноиды (простагландины и лейкотриены). Допустим, вредящий стимул, попав на кожу, разрушил клетки участка ткани около ноцицептора (рис. 34.5, а). Из погибающих клеток выходят ионы К+, которые деполяризуют ноцицептор. Кроме того, высвобождаются протеолитические ферменты; при их взаимодействии с глобулинами плазмы крови образуется брадикинин. Он связывается с рецепторными молекулами мембраны ноцицептора и активирует систему вторичного посредника, сенситизирующую нервное окончание. Другие высвобождаемые химические вещества, такие как серотонин тромбоцитов, гистамин тучных клеток, эйкозаноиды различных клеточных элементов, вносят в сенситизацию свой вклад, открывая ионные каналы либо активируя системы вторичных посредников. Многие из них воздействуют также на кровеносные сосуды, клетки иммунной системы, тромбоциты и другие эффекторы, участвующие в воспалении.

Кроме того, активация окончания ноцицептора может высвобождать такие регуляторные пептиды, как вещество Р (SP) и пептид, кодируемый геном кальцитонина (CGRP), из других окончаний того же ноцицептора посредством аксон-рефлекса (рис. 34.5, б). Нервный импульс, возникший в одной из ветвей ноцицептора, направляется по материнскому аксону к центру. Одновременно он распространяется антидромно по периферическим ветвям аксона того же ноцицептора, в результате чего в коже высвобождаются вещество P и CGRP (рис. 34.5, б). Эти пептиды вызывают расширение сосудов и повышение проницаемости капилляров. Благодаря веществу P и CGRP усиливается действие других веществ, которые выходят из поврежденных клеток, а также из тромбоцитов, тучных клеток и лейкоцитов, поступающих в патологический очаг. Развивающееся в итоге воспаление сопровождается характерной последовательностью изменений кожи: покраснение и повышение температуры вследствие усиленного кровотока, неврогенный отек, боль и повышенная чувствительность, обусловленная сенситизацией ноцицепторов. Эта совокупность реакций составляет типичную клиническую картину воспаления.

Проприорецепторы.

Проприоцептивные ощущения дают человеку возможность воспринимать изменения положения отдельных частей тела в покое и во время совершаемых движений. Информация, поступающая от проприоцепторов, позволяет ему постоянно контролировать позу и точность произвольных движений, дозировать силу мышечных сокращений при противодействии внешнему сопротивлению, например при подъеме или перемещении груза. Проприоцепторы представлены интрафузальными волокнами мышц (датчики длины мышцы), сухожильными рецепторами Гольджи (датчики напряжения мышцы) и механорецепторами суставных капсул, отвечающими изменениями фоновой активности на сгибание или разгибание в суставе и морфологически сходными с тельцами Руффини и рецепторами Гольджи.

Благодаря проприорецепторам человек обладает чувством положения тела в пространстве, чувством движения и чувством силы.

Чувство положения информирует о том, под каким углом находится каждый сустав, и в конечном итоге - положение всех конечностей. Чувство положения почти не подвержено адаптации.

Чувство движения - это осознание направления и скорости движения суставов. Человек воспринимает как активное движение сустава при мышечном сокращении, так и пассивное, вызванное внешними причинами. Порог восприятия движения зависит от амплитуды и от скорости изменения угла сгибания суставов.

Чувство силы - это способность оценить мышечную силу, нужную для движений или для удержания сустава в определенном положении.

Различают три вида проприорецепторов - мышечные веретена, сухожильные органы Гольджи и рецепторы суставов. Мышечные веретена состоят из центральной части - ядерной сумки - и периферических, в которых содержится 12-13 тонких интрафузальных мышечных волокон. Длина веретена достигает нескольких миллиметров, а диаметр несколько десятых долей миллиметра. Прикрепляются веретена в экстрафузальных волокон параллельно. В разных мышцах количество веретен на 1 г ткани различна - от нескольких до нескольких сотен. Что точные движения выполняет мышца, тем более в нем веретен.

В центральной части веретена содержится спиралевидное нервное окончание, которое выполняет рецепторную функцию. Отсюда начинается афферентные волокна (типа АА), который проводит возбуждение очень быстро. Если отводить ПД от этого волокна при растяжении мышцы, то можно заметить, что частота импульсов зависит от степени растяжения. Различные виды веретен информируют ЦНС об изменениях длины мышцы, а также о скорости, с которой она меняется.

Спиралевидное нервное окончание в ядерной сумке может возбуждаться и другим путем - при сокращении интрафузальных мышечных волокон. На их сокращения влияют на-мотонейроны.

Под влиянием у-мотонейронов сокращаются интрафузальных волокна. Это обусловливает растяжение спиралевидного нервного окончания в ядерной сумке, а следовательно, и усиление импульсации в спинной мозг. Сенсорные нейроны заканчиваются у а-мотонейронов, возбуждают их, и вследствие этого сокращаются экстрафузальных волокна. Эти реакции лежат в основе миотатичних рефлексов - рефлексов на растяжение. Так называется рефлекторное сокращение мышц в ответ на их растяжение. Латентный период этих рефлексов очень короткий, что объясняется моносинаптичнистю их рефлекторной дуги. Рефлекс содержится, пока длится растяжение мышцы. Напряжение мышцы тем больше, чем бильцие он растягивается. Миотатични рефлексы большей степени выражены в антигравитационных мышцах - екстензорах.

Вышележащие отделы ЦНС могут влиять на функции мышц как прямо (через а-мотонейроны), так и косвенно (через Y-мотонейроны). Второй механизм воздействия осуществляется через в-петлю. С ее помощью длина мышечного веретена по принципу положительной связи регулирует длину мышцы и предотвращает его чрезмерном растяжению.

Функции органов Гольджи в сухожилиях отличаются от функций мышечных веретен тем, что эти рецепторы реагируют на величину

и скорость напряжения мышцы. Сигналы от этих рецепторов передаются волокнами типа ир к тормозным мотонейронов, которые тормозят а-мотонейроны передних рогов. Эти рефлексы обеспечивают отрицательную обратную связь, предотвращает чрезмерное сокращению мышцы, которое может привести к разрыву сухожилия или его отрыва от кости.

Кроме названных рецепторов, есть еще рецепторы в суставах, которые информируют ЦНС о степени сгибания или разгибания в этом суставе. Таким образом, импульсы, поступающие в ЦНС, дают информацию о длине мышцы и скорость изменения этой длины (мышечные веретена), о напряжении (сокращение) мышцы и скорость его изменения (сухожильные органы Гольджи), о процессах, которые происходят в суставах (рецепторы суставов).

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: