Алюминий и его сплавы

Лабораторная работа 1. «ИЗУЧЕНИЕ СТРУКТУРЫ И СВОЙСТВ СПЛАВОВ НА ОСНОВЕ ЦВЕТНЫХ МЕТАЛЛОВ»

Цель работы: Изучить микроструктуры различных металлов и сплавов, познакомиться с термической обработкой, свойствами и применением этих сплавов.

Общие сведения

Цветные сплавы являются более дорогими и дефицитными, чем черные. Однако благодаря их особым физическим, технологическим и эксплуатационным свойствам они нашли достаточно широкое применение. В настоящей работе рассматриваются металлы и сплавы, имеющие наибольшее значение: медь и ее сплавы, легкие сплавы на основе алюминия, магния и титана, а также подшипниковые сплавы.

Медь и сплавы на ее основе

Медь – металл красновато-розового цвета. Температура плавления 1083оС. Кристаллическая решетка – гранецентрированная кубическая с периодом 0,36153 нм. Плотность меди высокая – 8,94 г/см3. Медь характеризуют высокие тепло и электропроводность; хорошо сопротивляется коррозии в обычных атмосферных условиях, в пресной и морской воде и других агрессивных средах, но имеет плохую устойчивость в сернистых газах и аммиаке, растворяется в кислотах-растворителях. Марки технической меди - М00, М0, М0б, М1б, М1, М1р. М2. М2р. М3, М3р (б – бескислородная, р – раскисленная). Содержание примесей - от 0,01 до 0,5%. Наиболее вредными примесями, вызывающими горячеломкость (красноломкость) меди и ее сплавов, являются свинец (допустимое содержание 0,04%) и особенно висмут (допустимое содержание 0,001%), который вызывает также и хладноломкость. Механические свойства меди зависят от ее чистоты и состояния. Для отожженной меди предел прочности при растяжении примерно 220 МПа, относительное удлинение 40-50%. Применяют медь благодаря ее токо- и теплопроводящим свойствам в электротехнике (проводники, шины, коллекторы) как материал для теплообменников, водоохлаждаемых изложниц, кристаллизаторов, поддонов.

Структура деформированной и отожженной технически чистой меди – полиэдрические зерна с двойниковыми образованиями.

Медные сплавы

Различают следующие группы сплавов на основе меди: латуни (сплавы где основным легирующим элементом является цинк), бронзы (сплавы с различными другими элементами) и медно-никелевые сплавы, которые в данной работе не рассматриваются.

Маркируют сплавы в соответствии с их химическим составом. Легирующие элементы обозначают русскими буквами: О – олово, Ц – цинк, Мц – марганец, Ж – железо. Ф – фосфор, Б – бериллий, А – алюминий, Н – никель, С – свинец, Х – хром и т.д.

Цифры обозначают количество соответствующих элементов в процентах. Если сплав деформируемый, то после букв Л (латунь) или Бр (бронза) перечисляют элементы, а затем соответственно их количество (ЛАН 59-3-2, БрАЖ 9-4), причем в латунях первая цифра отражает содержание меди, количество цинка определяется по остатку. В литейных сплавах буквы, обозначающие добавки, и цифры содержания чередуются (ЛЦ40С, БрА11Ж6Н6).

Медные сплавы отличаются высокими механическими и технологическими свойствами, хорошо сопротивляются износу и коррозии.

Латуни

Латуни называют простыми, или двойными, если в них входят только медь и цинк, и сложными, или легированными (многокомпонентными), если в них введены другие элементы.

Структура латуней описывается диаграммой состояния Cu-Zn. При комнатных температурах до 39% цинка растворяется в меди, образуя фазу α - твердый раствор замещения цинка в меди. При большем содержании цинка появляется фаза β‘ – упорядоченный твердый раствор на основе электронного соединения CuZn с объемноцентрированной кубической решеткой. Эта фаза является твердой и хрупкой составляющей. В промышленном масштабе применяют только однофазные α - латуни и двухфазные (α+β)-латуни (содержащие цинка не более 45%), поэтому другие соединения меди с цинком не упоминаются. С увеличением содержания цинка прочность латуней увеличивается, особенно у двухфазных латуней, пластичность же возрастает до концентрации цинка 30-32%, а затем резко уменьшается. В связи с этим однофазные латуни легко деформируются как в горячем, так и в холодном состояниях; двухфазные латуни обычно подвергают только горячей обработке давлением.

Легирующие элементы сообщают латуням более высокие свойства. Алюминий существенно повышает прочность, особенно в сочетании с никелем, марганцем, железом, кремнием; никель улучшает технологические свойства и коррозионную стойкость, олово тормозит коррозию в морской воде, свинец улучшает обрабатываемость резанием, железо измельчает зерно и наряду с небольшим количеством марганца увеличивает пластичность.

В современной технике применят как деформируемые, так и литейные латуни, из которых получают плотные, лишенные ликвации отливки с высокими механическими свойствами, однако при литье существуют определенные трудности из-за возникновения крупных усадочных раковин.

Основной вид термической обработки латуней – отжиг для смягчения материала перед дальнейшей обработкой давлением, для получения в готовых полуфабрикатах нужных свойств, а также для устранения склонности к сезонному растрескиванию, которому подвержены латуни. Латунь ЛАНКМц75-2-2,5-0,5-0,5 – единственный известный дисперсионно твердеющий сплав, эффективно упрочняющийся в результате закалки и старения или НТМО. Прочность латуней можно повысить нагартовкой, но при этом снижается пластичность сплава.

Примерный состав и свойства некоторых латуней можно найти в табл.1.

Микроструктура деформированной и отожженной однофазной латуни представляет полиэдрические зерна α-твердого раствора с двойниковыми образованиями; из-за явления оптической анизотропии зерна могут быть неодинаково окрашены. В структуре двухфазной латуни наблюдаем светлые зерна фазы α - твердого раствора на темном фоне β‘- фазы – упорядоченного твердого раствора на базе соединения CuZn.

Из простых однофазных латуней изготавливают проволоку, ленты, листы, трубы, фурнитуру, что требует больших степеней деформации при производстве даже без нагревания. В частности, латунь Л96 применяют для изготовления радиаторных и конденсаторных трубок. Из простых двухфазных латуней (Л59) заготовки производят только способом горячей деформации (листы, прутки, трубы, штамповки). Специальные латуни применят для изготовления широкого ряда ответственных деталей с высокими свойствами, в том числе антифрикционными, в морском, химическом машиностроении, для теплотехнической аппаратура, крепежных изделий и арматуры, зубчатых колес, втулок и т.д.

Бронзы

В настоящее время применяемые в промышленности бронзы весьма многообразны, в данной работе будут рассмотрены только некоторые группы.

Оловянные бронзы

Это традиционные сплавы, которые из-за высокой стоимости и дефицитности олова часто заменяют так называемыми безоловянными бронзами. Наибольшее практическое значение имеют бронзы, содержащие не более 20% олова. Диаграмма состояния медь-олово достаточно сложна, указывает на существование в зависимости от состава и температуры весьма разнообразных фаз и структурных составляющих. Однако структура сплавов, полученных в реальных производственных условиях, очень отличается от равновесной. До 5-6% олова в сплавах существует однофазный раствор замещения олова в меди (α-фаза). При большем содержании олова в структуре появляется эвтектоид (α+δ), где δ-фаза – электронное соединение Cu31Sn8 со сложной кубической решеткой. Он имеет высокую твердость и хрупкость, его появление в сплаве вызывает резкое снижение пластичности и вязкости, повышает твердость и износостойкость. В микроструктуре двухфазных бронз эвтектоид выглядит в виде темных образований по границам светлых зерен твердого раствора. Широкий интервал кристаллизации обуславливает у оловянных бронз большую склонность к дендритной ликвации, низкую жидкотекучесть, рассеянную усадочную пористость и поэтому невысокую герметичность отливок. Для улучшения свойств, в том числе технологических, а также для уменьшения стоимости бронзы легируют. Цинк растворяется в меди, улучшает литейные свойства бронз, удешевляет их. Свинец повышает антифрикционные свойства и обрабатываемость резанием. Фосфор, являясь раскислителем бронз, улучшает их жидкотекучесть, твердость, упругие и антифрикционные свойства, при этом ухудшает технологическую пластичность. Он образует фосфид меди Cu3P. Никель способствует измельчению структуры, повышению механических свойств, коррозионной стойкости, плотности отливок и уменьшению ликвации. Оловянные бронзы превосходят медь и латуни по коррозионной стойкости, особенно в морской воде.

Основными видами термической обработки являются гомогенизация и промежуточный отжиг, направленные на облегчение обработки давлением.

Примерный состав и свойства не которых бронз приведены в табл.1.

Деформируемые бронзы (БрОФ6,5-0,15) применяют для изготовления упругих элементов (мембран, пружин), сеток в аппаратостроении. Бронзы с повышенным содержанием олова (литейные), особенно с добавками фосфора, используют для изготовления подшипников скольжения, подпятников кранов, шестерен, червячных винтов и других деталей, работающих на трение.

Алюминиевые бронзы

Алюминиевые бронзы получили наибольшее распространение как более дешевые заменители оловянных; имеют более высокие прочностные свойства, чем латуни и оловянные бронзы.

Структура алюминиевых бронз соответствует диаграмме состояния системы медь-алюминий. При комнатной температуре в меди может раствориться примерно 9% алюминия, однако в реальных сплавах из-за ликвации предельная концентрация фазы α-твердого раствора замещения алюминия в меди снижается до 8% и даже менее. При большем содержании алюминия в сплавах появляется эвтектоид (α + γ2), который получается в результате распада высокотемпературной фазы β. В результате этого прочность сплавов повышается, а пластичность начинает падать. Оптимальные механические свойства имеют сплавы, содержащие 5 – 8% алюминия. Узкий интервал кристаллизации определяет лучшую жидкотекучесть, меньшую склонность к ликвации, большую плотность отливок, но значительную усадку при кристаллизации и ряд других недостатков по сравнению с оловянными бронзами. Для улучшения свойств сплавы легируют. Железо повышает прочностные свойства бронз, как и марганец, который одновременно повышает и пластичность, увеличивая способность к холодной обработке давлением и позволяя проводить ее для сплавов с содержанием алюминия более 7%. Никель повышает механические свойства, коррозионную стойкость и жаропрочность бронз, делает возможным проведение упрочняющей термической обработки по режиму закалка с последующим старением. Одни алюминиевые бронзы применяют только как деформируемые (БрА5, БрАЖМц10-3-1,5), другие - только как литейные (БрАЖН11-6-6), третьи - и как деформируемые, и как литейные сплавы (БрА9Мц2Л). Деформируемые полуфабрикаты применяют в состоянии поставки, после дорекристаллизационного (для повышения упругих свойств) и рекристаллизационного отжигов. Термически упрочняемой является бронза БрАЖН10-4-4 (закалка от 980оС и старение при 400оС), эта бронза сохраняет удовлетворительную прочность до температур 400-500оС. Примерный состав и свойства некоторых бронз приведены в табл. 1.

 

 

Таблица 1

Примерный химический состав и механические свойства некоторых латуней и бронз

 

Марка сплава Содержание легирующих элементов, % Предел прочности при растяжении σв, МПа   Относительное удлинение δ, %
Л96 4 Zn, 96 Cu    
Л59 41 Zn, 59 Cu    
БрА5 5 Al, остальное Cu    
БрА10 10Al, остальное Сu    
БрАЖМц10-3-1,5 10 Al, 3 Fe, 1,5 Mn, остальное Cu    
БрБ2 (после закалки и старения) 2 Be, остальное Cu 1150-1250 4-6
БрОФ6,5-0,15 6,5 Sn, 0,15 P, остальное Cu    
БрС30 30 Pb. остальное Cu    

 

Наиболее пластичная и наименее прочная – бронза БрА5. Ее применяют для изготовления пружин, мембран, сильфонов, деталей, работающих в морской воде, разменной монеты. Бронзу БрА10 применяют для фасонных отливок, прессованных изделий. Бронзы с большим (от 9%) содержанием алюминия и добавками железа, никеля, марганца кроме твердого раствора имеют в структуре включения эвтектоида (до 35%) и железосодежащей фазы FeAl3, потому обладают повышенными прочностью и антифрикционностью. Из них изготавливают ответственные детали: шестерни, втулки, зубчатые колеса, седла клапанов, подшипники и т.д.

Бериллиевые бронзы

Отличаются уникальным сочетанием свойств: высокими пределами упругости и прочности, высокой тепло и электропроводностью, коррозионной стойкостью в сочетании с повышенным сопротивлением усталости, ползучести и изнашиванию. Ценным свойством является отсутствие искры при ударе. Основным недостатком этих бронз является их высокая стоимость.

Бериллий обладает уменьшающейся растворимостью в меди при понижении температуры (от 2,7 до 0,2% при комнатной температуре). В структуре бронзы БрБ2 при комнатной температуре в отожженном состоянии присутствует твердый раствор замещения бериллия в меди α и включения γ - фазы на основе интерметаллида CuBe. Эта бронза эффективно упрочняется термической обработкой. После закалки с температур 750-790оС (соответствующих однофазной области) в воде структура бериллиевых бронз представлена пересыщенным твердым раствором, что позволяет легко деформировать ее без нагревания. Последующее старение при 320-340оС в течение 2-5 ч вызывает распад пересыщенного раствора закалки и формированию дисперсных включений γ‘-фазы, что приводит к повышению прочности. Еще большее упрочнение достигается в результате применения режима НТМО. Легирование бронз никелем (0,2-0,5%) и титаном (0,1-0,25%) позволяет снизить содержание дефицитного дорогого бериллия до 1,7-1,9% без заметного снижения механических свойств (БрБНТ 1,7, БрБНТ 1,9). Примерные составы и свойства некоторых бронз в термически упрочненном состоянии приведены в табл.1.

Из бериллиевых бронз применяют детали особо ответственного назначения: упругие элементы точных приборов, детали, работающие на износ (кулачки, шестерни, червячные колеса), подшипники, работающие при повышенных скоростях, давлениях и температурах, инструмент, не дающий искры.

Свинцовые бронзы

Свинцовые бронзы имеют наилучшие антифрикционные свойства и самую высокую теплопроводность из всех сплавов на основе меди, поэтому их широко применяют для изготовления высоконагруженных подшипников скольжения, работающих при высоких скоростях (в авиационных двигателях, дизелях, мощных турбинах). Наибольшее применение нашли бронзы с содержанием свинца 25-30%. Медь и свинец в твердом состоянии образуют эвтектику, структура сплава состоит из кристаллов меди и включений свинца, которые располагаются по границам зерен или заполняют междендритные пространства. Прочность и твердость свинцовых бронз невысока (см. табл.1), поэтому их наплавляют на стальные трубы или ленты и уже из них изготавливают подшипники.

Алюминий и его сплавы

Алюминий

Алюминий – металл серебристо-белого цвета, имеет температуру плавления 660оС. Кристаллическая решетка – гранецентрированный куб с периодом 0,40412 при комнатной температуре. Плотность 2,7 г/см3, что позволяет отнести его к легким металлам.

Алюминий имеет высокую тепло и электропроводность, уступая серебру, меди и золоту; хорошо полируется. На поверхности металла находится оксидная пленка, защищающая его от действия влажной атмосферы и многих органических и минеральных кислот-окислителей. В щелочных средах быстро растворяется. Производится алюминий особой чистоты А999, высокой чистоты А995, А99, А97, А95 и технической чистоты А85, А8,А7,А6,А5,А0 (количество примесей возрастает соответственно от 0,001 до 1%). Наиболее вредной примесью является железо, образующее соединение FeAl3, которое выделяется в виде игл и резко снижает пластичность и коррозионную стойкость алюминия. При наличии кремния могут образовываться в зависимости от состава два тройных соединения α(Fe-Al-Si) и β(Fe-Al-Si), имеющие высокую хрупкость и снижающие пластичность. Технический алюминий в отожженном состоянии имеет прочность 70-80 МПа, относительное удлинение около 35%. Алюминий применяется для ненагруженных деталей и элементов конструкций, когда от материала требуется легкость, свариваемость, пластичность, коррозионная стойкость (рамы, двери, трубопроводы, фольга, цистерны, посуда). Он применяется для производства теплообменников, в электротехнике - для конденсаторов, проводов, кабелей, шин, для производства рефлекторов и т.д.

Алюминиевые сплавы

К преимуществам большинства промышленных алюминиевых сплавов можно отнести невысокую плотность (до 2,85 г/см3), высокую удельную прочность, хорошую коррозионную стойкость, тепло- и электропроводность. В качестве основных легирующих элементов в алюминиевых сплавах применяют медь, магний, кремний, марганец, цинк, реже литий, никель, титан, бериллий, цирконий, железо и др. Большинство легирующих элементов образуют с алюминием ограниченные твердые растворы замещения с переменной растворимостью, а также промежуточные фазы с алюминием и между собой – двойные, тройные и многокомпонентные интерметаллиды.

В зависимости от способа производства заготовок принято делить сплавы на деформируемые, литейные и спеченные, которые строго говоря являются разновидностью деформируемых. Сплавы могут быть не упрочняемыми и упрочняемыми термообработкой. Существует более подробное деление сплавов в соответствии с их свойствами (нормальной прочности, высокопрочные, жаропрочные, повышенной пластичности и коррозионной стойкости, антифрикционные и т.д.).

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: