Нуклеофильные свойства

а) Алкилирование

Примеры реакций алкилирования обсуждались при рассмотрении методов получения аминов.

б) Ацилирование

2RNH2 + R/COX ® R/CONHR + RNH3X

2R2NH + R/COX ® R/CONR2 + R2NH2X

(X=Cl, OCOR/)

Ацилирование аминов функциональными производными карбоновых кислот дает возможность получать вторичные и третичные амиды из первичных и вторичных аминов соответственно. Реакция подробно обсуждена ранее (лекция №36).

в) Взаимодействие с сульфонилхлоридами

Сульфонилхлориды взаимодействуют с аминами, давая сульфонамиды. Реакция с бензолсульфонилхлоридом лежит в основе пробы Гинсберга, позволяющей различать и разделять первичные, вторичные и третичные амины.

Сульфонамиды, образующиеся из первичных аминов, являются NH-кислотами и со щелочами дают растворимые в воде соли.

Вторичные амины дают сульфонамиды, которые не содержат кислого водорода и не растворяются в щелочах.

Третичные амины не реагируют.

г) Нитрозирование

Нитрозирование аминов происходит при взаимодействии с азотистой кислотой в кислой среде. Неустойчивую азотистую кислоту генерируют действием сильной кислоты на нитриты. Реакция протекает по-разному в зависимости от типа амина.

Первичные алифатические амины реагируют с образованием неустойчивых алкилдиазониевых солей, которые разлагаются с выделением газообразного азота и сложной смеси продуктов дезаминирования.

Образование солей диазония – сложный многостадийный процесс, который подробно будет рассмотрен на примере ароматических аминов.

Разложение катиона алкилдиазония приводит к образованию карбокатиона, который стабилизируется путем алкилирования присутствующих в реакционной среде нуклеофилов или путем отщепления протона с образованием алкена. Этим процессам может предшествовать изомеризация карбокатиона в энергетически более стабильный ион. Так, разложение катиона н -пропилдиазония в водном растворе наряду н-пропиловым спиртом дает изопропиловый спирт, а также продукт элиминирования - пропен.

Со вторичными аминами азотистая кислота образует нерастворимые в реакционной среде нитрозамины.

R2NH + NaNO2 + HCl ® R2N-N=O + NaCl + H2O

Третичные амины в сильнокислой среде при комнатной температуре с азотистой кислотой не реагируют.

Нитрозирование аминов препаративного значения не имеет. Аналитическое значение этих реакций заключается в возможности качественно различить первичные, вторичные и третичные амины.

д) Галогенирование

Первичные и вторичные амины реагируют с гипогалогенитами с образованием N-галогенаминов.

(X= Cl, Br)

N-галогенамины – сильные окислители и галогенирующие реагенты.

Окисление

Амины дают разнообразные продукты окисления, состав которых зависит от природы окислителя и строения амина.

Перекись водорода и надкислоты окисляют третичные амины до N-оксидов.

R3N + HOOH ® R3N+-O- + H2O

В случае первичных и вторичных аминов первоначально образующиеся N-оксиды перегруппировываются в производные гидроксиламина.

Такое окисление протекает сложно, так как гидроксиламины сами легко окисляются. В случае первичных аминов конечными продуктами окисления являются нитросоединения, например:

Первичные амины, в которых аминогруппа соединена с третичным атомом углерода, окисляются в нитросоединения перманганатом калия в водном ацетоне.

Амины, содержащие атомы водорода в a -положении, при действии сильных окислителей (KMnO4) дают смесь веществ, в которой преобладают карбонильные соединения. Процесс протекает через промежуточное образование иминов, которые при гидролизе дают альдегиды или кетоны.

(R=Alk; R/=H, Alk)

Кислотные свойства

Первичные и вторичные алифатические амины являются очень слабыми NH-кислотами (pKа~33-35). Их кислотные свойства проявляются при действии щелочных металлов или таких сильных основания, как металлоорганические соединения.

Образующиеся алкил- и диалкиламиды металлов – очень сильные основания. Диалкиламиды, содержащие вторичные или третичные алкильные радикалы (например, диизопропиламид лития), представляют интерес для органического синтеза как ненуклеофильные основания. Будучи сильными основаниями, они обладают низкой нуклеофильностью по причине стерических затруднений, возникающих при атаке электрофильных центров за исключением протона. Их используют в органическом синтезе для отрыва протона и генерирования карбанионов.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: