Химические свойства алканов

Разница в электроотрицательностях водорода и углерода составляет 0,4 условных единицы, то есть связь С-Н малополярна. В ходе химических превращений алканов разрыв связей происходит, главным образом, гомолитически, то есть с образованием радикалов. Об этом же свидетельствуют экспериментальные данные, касающиеся энергии связей.

Так, гомолиз связи С-Н в метане требует 435 кДж/моль, тогда как для образования пары ионов - карбкатиона СН3+ и гидрид-иона необходимо 878 кДж/моль. Рассмотрение возможности образования другой пары ионов: метильного аниона СН3- и протона показывает, что этот вариант еще более нецелесообразен, т.к. только для превращения атома водорода в катион нужно затратить 1305 кДж/моль. Аналогично, при гомолитическом разрыве связи С-С затрачивается 351 кДж/моль, тогда как гетеролиз требует 757 кДж/моль.

Таким образом, наиболее характерными превращениями алканов являются такие, которые происходят в результате атаки частиц с неспаренным электроном (радикалов или атомов), называемые свободно-радикальные реакции. Самый простой пример – это взаимодействие метана с хлором на свету.

Свободно-радикальные реакции были подробно изучены Семеновым. Согласно его представлениям, они протекают по цепному механизму, который можно описать следующим образом.

Облучение заставляет молекулу хлора диссоциировать на два атома с неспаренным электроном (энергия диссоциации связи Cl-Cl 242,8 кДж/моль). Эта стадия называется инициированием цепи.

Затем происходит рост цепи, то есть последовательный ряд стадий реакции, когда из уже имевшихся в системе свободных радикалов возникают новые.

В тех случаях, когда два радикала сталкиваются, образуется новая молекула (этот процесс называется рекомбинация радикалов), происходит обрыв цепи и реакция прекращается.

В зависимости от условий, действие галогенов на алканы может протекать либо как замещение атомов водорода атомами галогена, либо с разрывом связи С-С. Последнее превращение требует более жестких условий, несмотря на то, что энергия, необходимая для разрыва С-С-связи (351 кДж/моль) меньше, чем таковая для разрыва С-Н-связи (435 кДж/моль). Это несоответствие объясняется пространственными затруднениями для доступа реагента к углерод-углеродной связи, которая "заслонена" атомами водорода. Можно привести количественное объяснение, которое основано на расчете энергетического эффекта реакции по закону Гесса. Так, для реакции атома хлора с молекулой этана, для которой можно предположить три направления, наиболее выгодным оказывается то, в ходе которого образуется молекула HCl и этильный радикал (DH = -21 кДж/моль). Два других направления имеют положительный тепловой эффект (т.е. протекают с поглощением тепла). Это связано с величиной термодинамической стабильности радикалов метила и этила, и энергии связей Н-Cl и C-Cl.

Такой подход позволяет оценить активность различных галогенов в реакциях замещения водорода в алканах (реакциях металепсии). Для получения полной энергетической картины реакции необходимо учитывать энергию разрыва и образования всех связей: диссоциацию молекулы галогена, разрыв С-Н-связи в алкане, а также образование связей C-Hal и H-Hal. Так, хлорирование протекает экзотермически с выделением 117 кДж/моль, бромирование идет также экзотермически, но с меньшим тепловым эффектом (DH = -46 кДж/моль), при фторировании выделяется так много энергии, что происходит разрушение молекулы алкана, разрываются и С-Н, и С-С – связи (DH = -485 кДж/моль). Реакция йодирования, напротив, эндотермична (DH = 50 кДж/моль) и поэтому, несмотря на то, что молекула йода диссоциирует легче других галогенов, замещение не происходит.

До сих пор мы рассматривали галогенирование алканов на примере метана и этана, т.е. когда замещение водорода происходит при первичном атоме углерода. Но, как мы видели, даже в столь простых случаях реакция приводит к целому ряду продуктов разной степени замещения.

Иная картина наблюдается, когда в реакцию с хлором вступают алканы более сложного строения. Например, в пропане атомы водорода неэквивалентны (6 из них - первичные, остальные два – вторичные). На основании чистой статистики в реакции хлорирования среди продуктов монозамещения соотношение 1-хлорпропана и 2-хлорпропана должно быть 3: 1. Действительно, при 500 оС это соотношение соблюдается, однако при более низких температурах повышается количество изо -пропилхлорида.

hn, 25 oC

СН3СН2СН3 + Cl2 ¾¾¾® СН3СН2СН2Cl + СН3СН(Cl)СН3

43% 57%

(статистически: 75% 25%)

Таким образом, при понижении температуры замещение при вторичном атоме углерода идет с более высокой скоростью, т.е. процесс становится более избирательным. Аналогично, доминирующим продуктом реакции изобутана с хлором оказывается 2-метил-2-хлорпропан, т.е. замещение идет преимущественно при третичном атоме углерода:

hn, 25 oC

СН3СН(СН3)СН3 + Cl2 ¾¾¾® СН3СН(СН3)СН2Cl + СН3С(СН3)(Cl)СН3

2-метилпропан 64% 36%

(статистически 90% 10%)

Поскольку в ходе реакции, независимо от ее ориентации, во всех случаях разрывается связь С-Н и образуется связь H-Cl, наблюдаемая региоселективность (преимущественная ориентация) галогенирования именно при третичном С-атоме должна объясняться свойствами промежуточного углеводородного радикала.

Ввиду того, что простейшие алифатические радикалы весьма неустойчивы, экспериментальных данных об их геометрии не получено, а квантово-химические расчеты, в зависимости от используемого метода, дают различные результаты. Согласно одним результатам радикал CH3 совершенно плоский, атом углерода находится в sp2-гибридном состоянии, и неспаренный электрон размещен в основном на его p-орбитали. Альтернативный вариант постулирует пирамидальное строение этого радикала, причем пирамида сильно сплющена и легко инвертируется. Недавно были получены рентгеноструктурные данные для свободного радикала не имеющего резонансной стабилизации, т.е. в данной структуре неспаренный электрон принадлежит только одному атому. Согласно этим данным трехвалентный атом имеет плоское строение, т.е. наиболее выгодным для него является sp2-состояние.

Главное различие метильного и трет -бутильного радикалов заключается в следующем: в метиле спиновая плотность (т.е. область, в которой находится неспаренный электрон) принадлежит только атому углерода, тогда как в трет -бутильном радикале она делокализована с участием трех алкильных групп (+I-эффект каждой С-С- и С-Н-связи). Известно, что делокализация электронов снижает энергию частицы (т.к. энергия волны уменьшается с увеличением объема пространства, в котором она распространяется), поэтому трет -бутил-радикал намного выгоднее метильного радикала.

Любая химическая реакция идет таким путем, чтобы на самой медленной стадии образовалась по возможности более стабильная промежуточная частица, поэтому в пропане замещение атомов водорода протекает более легко при вторичном атоме углерода. Измерение кинетики хлорирования показывает, что при 200оС скорости замещения при первичном, вторичном и третичном С-атомах относятся как 1:3,9:5,1 При бромировании относительные скорости различаются сильнее – 1:32:1600. К такому течению процесса применяют термин региоспецифичность, почти исключительная региоселективность. Последнее обстоятельство иллюстрирует известное правило химической кинетики: чем менее активна реагирующая частица, тем более она избирательна, т.к. ей труднее преодолеть более высокий потенциальный барьер.

Большинство других реакций замещения водорода в алканах также имеют свободно-радикальный механизм.

Сульфохлорирование

Эта реакция лежит в основе промышленного получения алкансульфокислот, соли которых используются как моющие средства. В промышленности применяют избыток сернистого газа для предотвращения хлорирования.

Нитрование

Нитрование алканов по Коновалову проводится действием 20%-ной азотной кислоты при 140 оС. Механизм реакции подразумевает промежуточное образование свободно-радикальных частиц.

Горение алканов

Алканы при высокой температуре на воздухе окисляются (сгорают) до углекислого газа и воды, их пары образуют взрывчатую смесь с воздухом. При сгорании углеводородов выделяется большое количество тепла (метан - 890 кДж/моль), поэтому они широко применяются как источники тепловой энергии, которую используют для нагревания или превращают в другие виды энергии.

Реакция также носит свободно-радикальный характер, и для ее инициирования вместо нагревания можно применять источники свободных радикалов, т.е. легко диссоциирующие соединения, например, 2,2'-азодиизобутиронитрил ("химический поджиг"):


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: