Сцинтилляционный детектор

Сцинтилляции — латинское слово — это вспышки видимого света, вызываемые в веществе заряженными частицами. Действие сцинтилляционного детектора основано на регистрации фотонов, испускаемых возбужденными атомами. Первый сцинтилляционный детектор, названный спинтарископом, представлял собой экран, покрытый слоем ZnS. Вспышки, возникавшие при попадании в него заряженных частиц, фиксировались с помощью микроскопа. Именно с таким детектором проведен опыт порассеянию альфа-частиц атомами золота, приведший к открытию атомного ядра.

Не каждый прозрачный материал годится в качестве сцинтиллятора, он должен быть прозрачен для собственного излучения. К таким относятся NaJ(Tl), CsI, органические: антрацен (C14H10), стильбен(C14H12), нафталин(C10H8). Регистрируемая заряженная частица попадает в кристалл и

  Рис.6 Схема сцинтилляционного счетчика: I — кристалл; II — фокусирующий электрод; III — фотоумножитель: 1 — фотокатод; 2 — 7 — эмиттеры; 8 — анод  

тормозится в нем, возбуждая и ионизируя атомы. Последние, переходя в основное состояние, испускают фотоны. Все это за время порядка 10-7 с. В хороших кристаллах несколько процентов энергии частицы переходит в световую. Кристалл в детекторе окружают отражателем так, что свет выходит только с одной стороны.

Для регистрации слабых световых вспышек используют фотоэлектронные умножители (ФЭУ) (рис.6). Создают оптический контакт между сцинтиллятором и торцом ФЭУ. Фотоны световой вспышки за счет фотоэффекта (см. лекцию) выбивают электроны из фотокатода (1), выполненного в виде тончайшей пленки на внутренней стороне колбы ФЭУ. Эти электроны фокусирующим электрическим полем направляются на промежуточный электрод (2), называемый динодом. Поверхность

  Рис.7 Эквивалентная схема  

динода покрыта материалом с большим коэффициентом вторичной электронной эмиссии. Каждый падающий электрон выбивает от 3 до 5 вторичных электронов. Всего динодов в ФЭУ более 10, что позволяет усиливать поток электронов в 105 и более раз. На аноде ФЭУ (8) возникает электрический импульс, который далее усиливается и регистрируется. Замечательной особенностью ФЭУ является хорошо соблюдаемая линейность усиления. Эквивалентная схема сцинтилляционного детектора изображена на рис.7. Уравнение, описывающее форму сигнала, приведено выше (см. формулу (1)). Зависимость тока от времени в этом уравнении определяется динамикой высвечивания сцинтиллятора и выглядит так

где τ - время высвечивания сцинтиллятора. Для неорганических сцинтилляторов это время порядка 10-7 с, для органических - 10-8 с, для пластических доходит до 10-9 с. Амплитуда импульса при потере в сцинтилляторе энергии ΔE примерно равна

где η - световой выход сцинтиллятора (доля энергии, высвечиваемой в виде световой, для антрацена 0.05), ε - квантовый выход фотокатода ФЭУ (среднее число фотоэлектронов, выбиваемых на 1 фотон, величина порядка 0.1), K - коэффициент усиления ФЭУ (105 и более), - средняя энергия фотонов, образуемых в сцинтилляторе, C - емкость анода ФЭУ относительно земли (величина порядка 20 пФ), e - заряд электрона. Если взять типовые значения для перечисленных величин и энергию частицы, потерянной в детекторе, 5 МэВ, то амплитуда

  Рис.8 Типичная форма спектра Cs-137  

получится порядка 10 вольт.

Энергетическое разрешение сцинтилляционных детекторов ΔE/E обычно не лучше нескольких процентов, так как на образование одного фотоэлектрона требуется энергия hν/(η·ε), равная примерно 500 эВ (сравните с 30 эВ для ионизационной камеры).

Открытие протона в лаборатории Резерфорда (1919г.) произошло путем наблюдения сцинтилляций, вызванных частицами в ядерной реакции α + 14N → p + 17O. С помощью сцинтилляционных счетчиков можно измерять энергетические спектры электронов и γ -лучей (на рис.8 форма спектра для моноэнергетических γ -квантов). Они применяются для измерения мощности дозы β - и γ -излучений, а также нейтронов. Достоинства сцинтилляционных счетчиков: высокая эффективность регистрации различных частиц (практически 100%); быстродействие; возможность изготовления сцинтилляторов разных размеров и конфигураций; высокая надёжность.

Большие объёмы сцинтилляторов позволяют создавать детекторы очень высокой эффективности для регистрации частиц с малым сечением взаимодействия с веществом (известен детектор с кристаллом NaJ(Tl) диаметром 0.75 м и длиной 1.5 м, просматриваемый большим числом ФЭУ). В знаменитом опыте Райнеса и Коэна по открытию нейтрино (1956) использовались три жидкостных сцинтиллятора объемом 1400 литров каждый.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: