Некоторые одноосновные кислоты

ЧЕЛНОЧНЫЕ МЕХАНИЗМЫ ПЕРЕНОСА ВОДОРОДА

Никотинамидные дегидрогеназы находятся не только в матриксе митохондрий, но и в цитозоле. Митохондриальная мембрана непроницаема для НАД, поэтому НАДН2, который образуется в цитозоле, может передать свой водород в митохондрию только с помощью специальных субстратных ЧЕЛНОЧНЫХ МЕХАНИЗМОВ. В митохондрию из цитозоля передается не сам НАДН2, а только водород, отнятый от него. Переносимый водород включается в молекулу вещества-челнока, способного проникать через митохондриальную мембрану. В митохондрии вещество-челнок отдает водород на митохондриальный НАД или ФАД и возвращается обратно в цитозоль.

В клетках организма человека существуют 2 типа челночных механизмов.

1. МАЛАТ-АСПАРТАТНЫЙ челнок (наиболее универсален для клеток организма). С высокой скоростью работает в миокарде, почечной ткани, печени.

В этой транспортной системе водород от цитоплазматического НАД передается на митохондриальный НАД(!), поэтому в митохондриях образуется 3 молекулы АТФ и не происходит потери энергии при переносе водорода. Для ткани печени малат-аспартатная система особенно важна, так как из митохондрии выводится Ацетил-КоА (в виде цитрата), а водород попадает в митохондрию (в составе малата).

Таким образом, происходит не только челночный транспорт водорода от цитоплазматического НАД к митохондриальному, а и обратный транспорт Ацетил-КоА из митохондрий в цитоплазму в виде цитрата. В цитоплазме Ацетил-КоА может быть использован для синтеза жирных кислот.

ЩУК может вернуться в цитоплазму и другим способом: она может вступить в реакцию трансаминирования с глутаминовой кислотой (СМОТРИТЕ РИСУНОК)

2. ГЛИЦЕРОФОСФАТНЫЙ челнок (встречается реже).

В этой транспортной системе водород от цитоплазматического НАД передается на митохондриальный ФАД(!), и в митохондриях образуется 2 молекулы АТФ вместо 3-х - происходит потеря энергии при переносе водорода.

В клетке существует не только челночный транспорт водорода от цитоплазматического НАД к митохондриальному. Происходит и обратный транспорт Ацетил-КоА из митохондрий в цитоплазму в виде цитрата. В цитоплазме Ацетил-КоА может быть использован для синтеза жирных кислот.

Формула Название кислоты R-COOH Название остатка RCOO-
   
систематическое тривиальное
       
HCOOH метановая муравьиная формиат
CH3COOH этановая уксусная ацетат
C2H5COOH пропановая пропионовая пропионат
C3H7COOH бутановая масляная бутират
C4H9COOH пентановая валерьяновая валерат
C5H11COOH гексановая капроновая капрат
C15H31COOH гексадекановая пальмитиновая пальмитат
C17H35COOH октадекановая стеариновая стеарат
C6H5COOH бензолкарбоновая бензойная бензоат
CH2=СH-COOH пропеновая акриловая акрилат

Название группы RCOO- (карбоксилат) входит в названия солей и сложных эфиров карбоновых кислот.

Для многоосновных кислот применяют суффиксы -диовая, -триовая и т.д.
Например:

· HOOC-COOH - этандиовая (щавелевая) кислота;

· HOOC-CH2-COOH - пропандиовая (малоновая) кислота.

Если атом углерода карбоксильной группы не входит в состав главной углеродной цепи (например, цикла), название кислоты строят из названия этой структуры, суффикса -карбоновая и слова кислота. Так, систематическое название бензойной кислоты C6H5-COOH - бензолкарбоновая кислота.

· Cтруктурная изомерия

- изомерия скелета в углеводородном радикале (начиная с C4).

- межклассовая изомерия, начиная с C2.
Например, формуле C2H4O2 соответствуют 4 изомера, относящиеся к различным классам органических соединений.

· Пространственная изомерия

- Возможна цис-транс изомерия в случае непредельных карбоновых кислот. Пример:


- Оптическую изомерию проявляют карбоновые кислоты, в молекулах которых присутствует асимметрический атом углерода (sp3-атом, связанный с 4-мя различными заместителями).
Например, 2-метилбутановая кислота C2H5CH(CH3)COOH существует в виде двух оптических изомеров.

Карбоксильная группа сочетает в себе две функциональные группы – карбонил и гидроксил, взаимно влияющие друг на друга. Это влияние передается по системе сопряжения sp 2-атомов O–C–O.

Электронное строение группы –СООН придает карбоновым кислотам характерные химические и физические свойства.

1. Смещение электронной плотности к карбонильному атому кислорода вызывает дополнительную (по сравнению со спиртами и фенолами) поляризацию связи О–Н, что определяет подвижность водородного атома (кислотные свойства).
В водном растворе карбоновые кислоты диссоциируют на ионы:

Однако карбоновые кислоты в целом – слабые кислоты: в водных растворах их соли сильно гидролизованы.

2. Пониженная электронная плотность (δ+) на атоме углерода в карбоксильной группе обусловливает возможность реакций нуклеофильного замещения группы -ОН.

3. Группа -СООН за счет положительного заряда на атоме углерода снижает электронную плотность на связанном с ней углеводородном радикале, т.е. является по отношению к нему электроноакцепторным заместителем. В случае предельных кислот карбоксильная группа проявляет -I -эффект, а в непредельных (например, CH2=CH-COOH) и ароматических (С6Н5-СООН) – -I и -эффекты.

4. Карбоксильная группа, являясь электроноакцептором, вызывает дополнительную поляризацию связи С–Н в соседнем (α-) положении и увеличивает подвижность α-водородного атома в реакциях замещения по углеводородному радикалу.
См. также "Реакционные центры в молекулах карбоновых кислот".

Атомы водорода и кислорода в карбоксильной группе -СООН способны к образованию межмолекулярных водородных связей, что во многом определяет физические свойства карбоновых кислот.


Вследствие ассоциации молекул карбоновые кислоты имеют высокие температуры кипения и плавления. При нормальных условиях они существуют в жидком или твёрдом состоянии.

Например, простейший представитель – муравьиная кислота НСООН – бесцветная жидкость с т. кип. 101 °С, а чистая безводная уксусная кислота CH3COOH при охлаждении до 16,8 °С превращается в прозрачные кристаллы, напоминающие лед (отсюда ее название ледяная кислота).
Простейшая ароматическая кислота - бензойная C6H5COOH (т. пл. 122,4°С) - легко возгоняется, т.е. переходит в газообразное состояние, минуя жидкое. При охлаждении её пары сублимирутся в кристаллы. Это свойство используется для очистки вещества от примесей.
Растворимость карбоновых кислот в воде обусловлена образованием межмолекулярных водородных связей с растворителем:

Низшие гомологи С13 смешиваются с водой в любых соотношениях. С увеличением углеводородного радикала растворимость кислот в воде уменьшается. Высшие кислоты, например, пальмитиновая C15H31COOH и стеариновая C17H35COOH – бесцветные твердые вещества, не растворимые в воде.

Карбоновые кислоты проявляют высокую реакционную способность. Они вступают в реакции с различными веществами и образуют разнообразные соединения, среди которых большое значение имеют функциональные производные, т.е. соединения, полученные в результате реакций по карбоксильной группе.


Образование солей происходит при действии на карбоновые кислоты:

а) активных металлов 2RCOOH + Mg (RCOO)2Mg + H2  
б) аммиака RCOOH + NH3 RCOONH4  
в) основных оксидов 2RCOOH + CuO (RCOO)2Cu + H2O  
г) гидроксидов металлов и аммония RCOOH + NaOH RCOONa + H2O  
д) солей более слабых кислот 2RCOOH + Na2CO3 2RCOONa + H2O + CO2  

Названия солей составляют из названий остатка RCOO (карбоксилат-иона) и металла. Например, CH3COONa – ацетат натрия, (HCOO)2Ca – формиат кальция, C17H35COOK – стеарат калия и т.п.

Более сильные кислоты способны вытеснять карбоновые кислоты из их солей:

CH3COONa + HCl CH3COOH + NaCl


2. Образование сложных эфиров R–COOR':


Реакция образования сложного эфира из кислоты и спирта называется реакцией этерификации (от лат. ether – эфир).

3. Образование амидов:


Вместо карбоновых кислот чаще используют их галогенангидриды:

Амиды образуются также при взаимодействии карбоновых кислот (их галогенангидридов или ангидридов) с органическими производными аммиака (аминами):

Амиды играют важную роль в природе. Молекулы природных пептидов и белков построены из α-аминокислот с участием амидных групп – пептидных связей.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: