Их роли в регуляции активности ферментов

Общие представления о гормонах и

ЛЕКЦИЯ № 2

Лигазы (синтетазы)

Изомеразы

Лиазы

Отщепление групп от субстратов по негидролитическому механизму с образованием двойных связей (или наоборот, присоединение по двойной связи). Реакции обратимы, за исключением отщепления СО2.

В реакцию вступает 1 вещество и 2 образуются (или наоборот): -SХ-SY- ↔ XY + -S=S-

Систематическое название с убстрат: что отщепляется–лиаза

L-малат ↔ фумарат + Н2О

Систематическое название: L-малат: гидро лиаза

Тривиальное название: фумараза

Взаимопревращения оптических, геометрических, позиционных изомеров. В реакцию вступает 1 вещество и 1 образуется. Исходя из типа катализируемой реакции изомеризации выделяется несколько подклассов: 1) рацемазы; 2) эпимеразы; 3) таутамеразы; 4) цис,- трансизомеразы; 5) мутазы (при внутримолекулярном переносе группы); 6) цикло-, оксоизомеразы.

Систематическое название субстратвид изомеризацииизомераза или субстратпродукт – изомераза

Фумаровая к-та ↔ малеиновая к-та

Систематическое название: фумарат цис,транс изомераза

гл-6ф ↔ фр-6ф

Систематическое название: гл-6ф фр-6ф изомераза

Соединение 2 молекул с использованием энергии макроэргических соединений (АТФ и др). В реакцию вступают 3 вещества, образуется 3 вещества.

Систематическое название субстрат: субстрат – лигаза (источник энергии)

АТФ + L-глутамат + NH4+ → АДФ + Фн + L-глутамин

Систематическое название: L-глутамат: аммиак лигаза (АТФ → АДФ + Фн)

Тривиальное название: глутаминсинтетаза

АТФ + ПВК + СО2 → АДФ + Фн + ЩУК

Систематическое название: ПВК: СО2 лигаза (АТФ → АДФ + Фн)

Тривиальное название: пируваткарбокилаза


ГОУ ВПО УГМА Росздрава

кафедра биохимии

Утверждаю

Зав. каф. проф., д.м.н.

Мещанинов В.Н.

_____‘’_____________2008 г

Тема: Регуляция активности ферментов в клетке.

Факультеты: лечебно-профилактический, медико-профилактический, педиатрический.

2 курс.

Одним из важнейших свойств живых организмов является способность к поддержанию гомеостаза. Гомеостаз в организме поддерживается за счет регуляции скорости ферментативных реакций. Эта регуляция осуществляется:

I). Доступностью молекул субстрата и кофермента;

II). Изменением каталитической активности молекул фермента;

III). Изменением количества молекул фермента.

I. Доступность молекул субстратов обеспечивается контролируемой работой трансмембранных транспортных систем. Например, количество в мембране ГЛЮТов (трансмембранных переносчиков глюкозы) определяет скорость поступления глюкозы в цитоплазму клеток и скорость метаболических процессов, в которых она используется (гликолиз, ПФШ, гликогенез).

Доступность коферментов зависит от скорости их регенерации. В результате, чем больше концентрация исходного субстрата и регенерированных коферментов, тем выше скорость метаболического пути. Например, дефицит НАД+ лимитирует реакции ЦТК.

II. Регуляция каталитической активности ферментов. Бывает:

1). Неспецифическая регуляция. В связи с лабильностью всех ферментов, их каталитическая активность зависит от температуры, рН и давления.

2). Специфическая регуляция. Под действием специфических активаторов и ингибиторов изменяется активность регуляторных ферментов, которые контролируют интенсивность метаболических процессов в организме.

Механизмы специфической регуляции каталитической активности ферментов:

1). Аллостерическая регуляция;

2). Регуляция с помощью белок-белковых взаимодействий;

3). Регуляция через ковалентную модификацию.

а). Регуляция путем фосфорилирования/дефосфорилирования фермента;

б). Регуляция частичным протеолизом.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: