Основы микропроцессорной техники

Глава 9. Типовая схема микропроцессорной системы.

Если вы внимательно прочитали предыдущие главы и поняли все, о чем в них говорится, то теперь можно приступать к новому этапу. Рассмотрим более детально как устроено типичная микропроцессорная система. Посмотрим на рисунок 28.

Рис. 28.

На схеме мы видим основные элементы простейшего микропроцессорного устройства. Все названия даны в русском и английском вариантах. Причем, если вы и дальше собираетесь заниматься микропроцессорной техникой, будьте готовы к тому, что в реальной практике вы будите встречаться исключительно с английскими обозначениями. Расшифруем эти обозначения:

CPU – центральный процессор (центральное процессорное устройство – ЦПУ)

RAM – оперативное запоминающее устройство (ОЗУ)

ROM – постоянное запоминающее устройство (ПЗУ)

Port I/O – порт ввода/вывода

Что такое процессор вы уже немного знаете. ОЗУ и ПЗУ – это два вида памяти. Их можно было бы не разделять. Процессор их и не разделяет и работает с обоими видами памяти одинаково. Но между ними есть одно довольно существенное различие. ОЗУ хранит информацию только при наличии напряжения питания. Классический пример ячейки ОЗУ – это простейший регистр, построенный на D-триггерах. В такой регистр можно записывать информацию и она там будет храниться. Но после выключения питания при последующем включении все D-триггера регистра установятся в случайное положение. Информация будет утеряна. ОЗУ на основе параллельных регистров сейчас почти не применяется. Однако и по сей день не придумано достаточно быстродействующее устройство памяти, не теряющее информации с выключением питания.

Современные ОЗУ строятся на других принципах. Сейчас в микропроцессорной технике преобладают так называемые динамические ОЗУ. Для хранения информации в них используются миниатюрные конденсаторы, выполненные интегральным способом на кристалле кремния. Каждый конденсатор хранит один бит информации. Входной сигнал при помощи дешифратора подается на этот конденсатор и, если это логическая единица, то конденсатор заряжается. Если логический ноль, то разряжается. Затем внутренний ключ отключает конденсатор от всех цепей и заряженные конденсаторы, какое то время хранят свой заряд. Но эти конденсаторы очень маленькие. И емкость их тоже мала. Поэтому свой заряд они держат всего лишь несколько миллисекунд. Для того, что бы информация ни потерялась, используют схему регенерации памяти. Все ячейки памяти организуются, как набор строк. Специальная схема периодически считывает информацию из памяти строка за строкой. После считывания очередной строки, считанная информация опять записывается в те же ячейки памяти. Конденсаторы при этом подзаряжаются снова. Для нормальной работы динамического ОЗУ схема микропроцессорного устройства должна непрерывно обеспечивать такую регенерацию в течение всего времени работы системы. ОЗУ современных больших компьютеров устроено так же по динамическому принципу. Однако схема регенерации встроена в сами микросхемы ОЗУ.

ПЗУ строятся по другой технологии. Они называются постоянными запоминающими устройствами потому, что информация в них записывается один раз либо при их производстве, либо непосредственно перед применением, при помощи специальных программаторов. Принцип хранения информации основан на пережигании внутренних перемычек в специальных микросхемах. Каждая перемычка предназначена для хранения одного бита информации. Если перемычка есть, то это значит, что в данной ячейке хранится единичный бит информации. Если она прожжена, то в ячейке ноль. Процессор может только читать информацию из ПЗУ. Запись информации в ПЗУ не возможна. Однако, если микропроцессор все же попытается произвести запись, то ничего страшного не произойдет. Ничего не запишется. В ячейке останется то, что там было до попытки записи. У микросхем ПЗУ просто отсутствует вход записи (WR).

Порты ввода/вывода (или просто порты) – это обыкновенные регистры. Они служат для того, что бы микропроцессорная система могла управлять, какими ни будь внешними устройствами. С одной стороны к ним подключены системные шины, а с другой подключаются внешние устройства. К выходам портов вывода можно подключать, например, цифро-аналоговые преобразователи (ЦАП), а через специальные электронные ключи, электромагнитные реле, лампочки, светодиоды, моторчики, соленоиды и любые исполнительные механизмы. Ко входам портов ввода можно подключать аналогово-цифровые преобразователи (АЦП), кнопки, датчики. При помощи портов можно даже делать переключения в самой схеме микропроцессорного устройства при помощи ключей и логических элементов. При этом микропроцессорное устройство становится гибким и способным автоматически подстраиваться под выполняемую задачу.

На схеме, на рис. 24 изображены три основные шины микропроцессорной системы. Вместе они составляют системную шину. Системная шина состоит из следующих составляющих:

ШД – шина данных (DATA bus)

ША – шина адреса (ADDR bus)

ШУ – шина управления (CONTROL bus)

Шина данных.

Эта шина предназначена для передачи данных от микропроцессора к периферийным устройствам и обратно. Напомню, что периферийными устройствами для процессора являются устройства памяти (ОЗУ и ПЗУ) и порты ввода/вывода. В простых микропроцессорных контроллерах она имеет обычно 8 разрядов. В более сложных – 16, 32, 64 … Количество разрядов всегда кратно восьми. По восьми разрядам передается один байт информации (то есть двоичное восьмиразрядное число). По шестнадцати разрядам можно одновременно передавать два байта. По 32-разрядной шине передача информации может происходить тремя способами: один байт (по младшим восьми разрядам), два байта (по младшим 16) и сразу по 4 байта. Аналогичный принцип используется и в 64-разрядной шине. Таким образом, как видим, байт тоже стал своеобразным стандартом, единицей измерения данных.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: