Подбор сечения верхнего пояса

Область применения. Фермы достаточно широко распространены как в гражданском, так и в промышленном строительстве. Областью применения ферм на лобовых врубках с тяжами из круглой стали являются покрытия с кровлями из листовой стали, волнистых асбоцементных плит, черепицы, а также чердачные покрытия с подвесными потолками.

К числу недостатков ферм на врубках следует отнести кустарность их изготовления, почти исключающую возможность механизации производственных процессов и требующую исполнителей высокой квалификации.

Достоинства и недостатки ферм на врубках. Такие фермы изготовляют на строительной площадке без применения специального оборудования, они могут выполняться из полусухого, а в случае крайней нужды даже из сырого круглого леса. При этом возможное провисание ферм вследствие усушки древесины и обмятия сопряжений может быть устранено в процессе эксплуатации сокращением рабочей длины тяжей (подтягиванием их путем дополнительного завинчивания гаек).

Фермы на лобовых врубках.

Общие сведения. Фермы, у которых сопряжение основных элементов – верхнего пояса с нижним, сжатых раскосов с поясами - осуществляется врубкой одного элемента в другой без применения других видов рабочих креплений, носят название ферм на врубках. Фермы на врубках выполняют из массивных лесоматериалов – бревен или брусьев.

Очертания и схемы ферм. Основным типом стропильных ферм на лобовых врубках являются треугольные фермы для покрытий с крутым двускатным профилем, присущим большинству зданий. Реже применяют фермы с многоугольным или прямоугольным очертанием. Основные схемы применяемых ферм на лобовых врубках изображены на рис.5.3.

Простейшие треугольные фермы, образованные тремя элементами: двумя наклонными стропильными ногами и горизонтальной затяжкой, применяют при небольших пролетах – до 6 м (рис.5.3.а). Чердачное перекрытие ввиду небольшого пролета может быть оперто непосредственно на наружные стены.

Рис.5.3.Схемы ферм на лобовых врубках

При пролетах до 10 м и необходимости подвесить чердачное перекрытие к фермам применяют простейшие треугольные фермы со средней стойкой – подвеской, осуществляемой из круглой стали или дерева (рис5.3.б). Через подвеску нагрузку от чердачного перекрытия передают на верхний коньковый узел фермы.

При небольших расстояниях между фермами (1,5-3 м) нагрузку от кровли распределяют равномерно по длине верхнего пояса, вследствие чего иногда для разгрузки пояса и уменьшения его сечения ставят, кроме подвески, еще два подкоса (рис.5.3.в).

При необходимости перекрытия более значительных полетов применяют многопанельные треугольные (рис.5.3.г,д,е), трапециевидные (рис.5.3.ж) или прямоугольные фермы (рис.5.3.з).

Сопряжения на врубках могут работать только на сжатие, поэтому решетка ферм должна быть направлена так, чтобы раскосы всегда были сжаты, а стойки растянуты. Поэтому в треугольной ферме раскосы – нисходящие, а в трапециевидной или прямоугольной ферме – восходящие. При одностороннем загружении в многоугольных фермах в средних раскосах могут возникнуть растягивающие напряжения, при которых эти раскосы выключаются из работы. Предусматривая эту возможность, в средних панелях можно установить встречные (обратные) раскосы (на рис.5.3.ж,з показаны пунктиром), которые работают при одностороннем загружении на сжатие взамен основных раскосов.

этих ферм ( 
5.4. Подбор поперечного сечения нижнего пояса.

Деревянный нижний пояс ферм будем проектировать из брусов прямоугольного поперечного сечения bнп´hнп.

Расчет нижнего пояса сводится к нахождению минимальной площади поперечного сечения пояса, обеспечивающей надежную работу конструкции.

Размеры сечения окончательно определяются при расчете опорного узла и стыковых сопряжений.

Сечение нижнего пояса делается постоянным по всей длине фермы. Для нахождения площади сечения нижнего пояса берут стержни с максимальными усилиями. Как мы уже отмечали, они расположены: в треугольных фермах - в опорной панели, в полигональной - в панелях средней части фермы.

Нижние пояса работают на растяжение. При правильном решении узлов фермы, и при отсутствии в рассматриваемой панели перелома оси пояса в стыке, растягивающую силу можно считать приложенной центрально.

Условие прочности нижнего пояса можно записать как

(5.1)

где Nнп – максимальное растягивающее усилие в элементах нижнего пояса,

Ант – площадь поперечного сечения нетто нижнего пояса (с учетом возможных ослаблений сечения), принимаемая обычно:

Ант=0,75×Абр – если конструкция опорного узла на натяжных хомутах,

Ант=0,67×Абр – если опорный узел на лобовой врубке (здесь Абр – полная площадь поперечного сечения),

Rр – расчетное сопротивление древесины растяжению, принимаемое по таблице 1.2.,

mв – коэффициент условий работы, учитывающий условия эксплуатации конструкции,

mо – коэффициент условий работы, учитывающий ослабление поперечного сечения, mо =0,8.

Выбор конструкции опорного узла фермы на данном этапе расчета осуществляется ориентировочно: при сравнительно больших усилиях в нижнем поясе (Nнп³9т) целесообразно выбрать конструкцию на натяжных хомутах, при малых усилиях – конструкцию на лобовой врубке.

Размеры поперечного сечения, определяемые по формуле (5.1), следует принимать в соответствии с сортаментом на пиломатериалы (табл.1.1.) так, чтобы высота сечения превышала ширину в 1,5–1,9 раза.

Поперечные сечения верхних поясов треугольных и полигональных ферм делаются постоянными по всей длине фермы. Расчет ведется по наиболее напряженным стержням: в треугольной ферме – в первой панели от опоры; в полигональной – в центральных или соседних с центральными панелях фермы.

Центрально сжатые верхние пояса рассчитывают на прочность по формуле

(5.2)

и устойчивость по формуле

(5.3)

где Nвп – максимальное усилие в стержнях верхнего пояса,

Ант – площадь сечения нетто верхнего пояса (Ант=0,75×Абр),

Ар – расчетная площадь поперечного сечения верхнего пояса (в большинстве случаев Арбр),

Rс – расчетное сопротивление древесины сжатию (табл.1.2.),

j – коэффициент продольного изгиба.

Последовательность расчета такова. Сначала из условия прочности следует определить (назначить) минимально возможное поперечное сечение верхнего пояса (заранее известно, что это прямоугольник с bвп=bнп, hвп³bвп).

Затем осуществляется проверка: будут ли стержни верхнего пояса с таким поперечным сечением устойчивы?

Определим гибкость стержня верхнего пояса в плоскости фермы:

,

где lx – расчетная длина стержня в плоскости фермы (равна расстоянию между узлами верхнего пояса фермы);

rx – радиус инерции поперечного сечения верхнего пояса относительно горизонтальной главной оси X:

rx= 0,289×hвп.

Гибкость стержня верхнего пояса в плоскости, перпендикулярной плоскости фермы, равна:

,

где ly – расстояние между смежными прогонами; при постановке прогонов в каждом узле верхнего пояса ly=lx;

ry – радиус инерции поперечного сечения верхнего пояса относительно вертикальной главной оси Y:

ry=0,289×bвп.

Из двух величин lx,ly выбирают максимальную (она не должна превосходить предельного значения гибкости для данного элемента lпр – см. табл.2.2.), подставляя ее в зависимость

, если l<70

или

, если l³70

определяют необходимый для формулы (5.3) коэффициент j. Осуществляя проверку по формуле (5.3), делают вывод - достаточно ли принятое сечение в смысле обеспечения необходимой устойчивости. Если проверка проходит, назначенное изначально сечение принимается. В противном случае необходимо увеличить высоту сечения и выполнить расчет сначала (проверить прочность, а затем устойчивость верхнего пояса).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: