Магнитоэлектрические приборы

Основные характеристики электромеханических приборов.

К основным характеристикам электромеханических приборов относятся: точность, диапазон измерений, чувствительность, время успокоения, надежность, собственное потребление мощности и др.

Показателями точности электромеханических приборов кроме основной погрешности являются также вариация показаний и невозвращение указателя к отметке механического нуля.

Вариация показаний определяется как разность показаний прибора (при одном и том же значении измеряемой величины) при плавном подходе указателя к испытуемой отметке сначала со стороны начальной, а затем конечной отметки шкалы. Причиной появления вариации может служить трение в опорах подвижной части. Для большинства приборов вариация не должна превышать абсолютного значения допускаемой основной погрешности.

Невозвращение указателя к отметке механического нуля определяется при плавном подводе указателя к этой отметке от наиболее удаленной от нее отметки шкалы. Причиной невозвращения к нулю является упругое последействие растяжек или спиральных пружин.

Временем успокоения подвижной части измерительного механизма называется промежуток времени, прошедший с момента изменения измеряемой величины до момента, когда отличие показаний прибора от установившегося его показания не превысит ±1 % от длины шкалы. Значение времени успокоения для большинства электромеханических приборов не должно превышать 4 с (для электростатических и термоэлектрических - 6 с).

Основной функциональной частью магнитоэлектрического прибора является измерительный механизм.

Устройство и принцип действия магнитоэлектрического ИМ

Принцип действия магнитоэлектрических механизмов основан на взаимодействии магнитных полей постоянного магнита и катушки (рамки), по которой протекает ток.

Рассмотрим устройство и работу магнитоэлектрического механизма с механическим противодействующим моментом. Конструктивно магнитоэлектрический механизм выполняется либо с подвижной катушкой, либо с подвижным магнитом. Конструкция с подвижной катушкой показана на рис. 4.2.

Магнитная система измерительного механизма состоит из постоянного магнита 1, магнитопровода с полюсными наконечниками 4, сердечника 3. Между полюсными наконечниками находится катушка (рамка) 2, по которой протекает ток I. Рамка соединена со стрелкой 5, перемещающейся по шкале 6. При прохождении тока I по рамке 2, помещенной в равномерное, постоянное магнитное поле с индукцией В, создается вращающий момент МВР, действующий на подвижную часть магнитоэлектрического механизма. Выражение для определения вращающего момента представляется как

МВР = d W e/da = d(YI)/da = d(BnSaI) /da = BnSI, (4.6)

где Y - потокосцепление магнитного поля постоянного магнита с рамкой; В - магнитная индукция в воздушном зазоре между полюсными наконечниками; n - число витков рамки; S - активная площадь рамки; a - угол поворота рамки.

Рис. 4.5

Противодействующий момент создается пружинками (на рис. 4.5 не показаны). Из равенства МВР = МПР можно получить следующее уравнение преобразования магнитоэлектрического измерительного механизма:

a = BnSI/W = SI I, (4.7)

где SI = BnS/W - чувствительность магнитоэлектрического механизма к току.

Рассмотрим магнитоэлектрический логометрический измерительный механизм, в котором противодействующий момент создается электрическим способом. В таком механизме подвижная часть выполняется в виде двух жестко скрепленных между собой рамок 1 и 2, как показано на рис. 4.6. По обмоткам рамок протекают токи I1 и I2, которые создают моменты М1 и М2.

Направления токов выбираются таким образом, чтобы моменты М1 и М2 действовали навстречу друг другу. Записав выражения для моментов в виде М1 = S1n1F1(a)I1; М2 = S2n2F1(a)I2.. Считая один из моментов вращающим, например, М1, а второй М2 - противодействующим, при установившемся равновесии выражение для угла отклонения подвижной части можно представить в виде

a = F(I1/I2). (4.8)

Рис. 4.6. Устройство магнитоэлектрического логометра

Из данного выражения видно, что магнитоэлектрический логометр измеряет отношение токов. Логометрические измерительные механизмы очень часто используются в приборах для измерения сопротивления. Показания таких приборов не зависят от напряжения питания.

Области применения, достоинства и недостатки

Магнитоэлектрические механизмы используется для построения различных приборов:

1) амперметров и вольтметров для измерения тока и напряжения в цепях постоянного тока;

2) омметров;

3) гальванометров постоянного тока, используемых в качестве нулевых индикаторов, для измерения малых токов и напряжений;

4) баллистических гальванометров, применяемых для измерений малых количеств электричества;

5) приборов для измерения в цепях переменного тока:

а) выпрямительных, термоэлектрических и электронных приборов с преобразователями переменного тока в постоянный;

б) осциллографических гальванометров;

в) вибрационных гальванометров, используемых в качестве нулевых индикаторов переменного тока.

Достоинствами магнитоэлектрических приборов являются:

1) высокая чувствительность;

2) высокая точность;

3) малое собственное потребление мощности;

4) равномерная шкала;

5) малое влияние внешних магнитных полей.

К недостаткам магнитоэлектрических приборов можно отнести:

1) невысокую перегрузочную способность;

2) сравнительно сложную конструкцию;

3) применение, при отсутствии преобразователей, только в цепях постоянного тока.

Магнитоэлектрические приборы занимают первое место среди других электромеханических приборов. Они выпускаются вплоть до класса точности 0,05.

Погрешности магнитоэлектрических приборов

Одной из основных причин возникновения погрешности является отклонение температуры от градуировочной (температурная погрешность). При повышении температуры уменьшаются магнитная индукция в рабочем зазоре (индукция уменьшается примерно на 0,2 % на 10 0С) и удельный противодействующий момент (удельный противодействующий момент уменьшается примерно на 0,2-0,4 % на 10 0С), увеличивается электрическое сопротивление обмотки рамки и токоподводов (пружинок или растяжек).

Следует отметить, что при уменьшении магнитной индукции показания магнитоэлектрического прибора уменьшаются, а при уменьшении удельного противодействующего момента показания увеличиваются. Таким образом, эти два фактора взаимно компенсируют друг друга.

Для уменьшения температурной погрешности, обусловленной изменением электрического сопротивления обмотки рамки и растяжек (или пружинок), в магнитоэлектрических приборах применяются различные схемные решения, например, включение последовательно с рамкой добавочного сопротивления с малым температурным коэффициентом сопротивления. Подобная схема компенсации позволяет уменьшить температурную погрешность магнитоэлектрических вольтметров до значений, соответствующих классу точности 0,1.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: