Электростатические приборы

Устройство и принцип действия электростатического ИМ

В основе электростатического прибора лежит электростатический измерительный механизм, состоящий из системы подвижных и неподвижных электродов, образующих электрическую емкость. В электростатических измерительных механизмах вращающий момент возникает в результате взаимодействия двух систем заряженных проводников, одна из которых является подвижной. В данном механизме перемещение подвижной части приводит к изменению емкости системы. В настоящее время практическое применение нашли два вида измерительных механизмов: в первом изменяется активная площадь электродов (данная конструкция применяется в основном в вольтметрах на низкие напряжения), во втором - расстояние между электродами (эта конструкция используется в киловольтметрах). На рис. 4.12 показан механизм с изменением активной площади электродов.

Рис. 4.12. Устройство электростатического механизма

Неподвижная часть ИМ состоит из одной или более камер 1, в воздушные зазоры которых свободно входят тонкие пластины 2 подвижной части. Подвижные пластины закреплены на оси 3 вместе со стрелкой 4. При подключении напряжения к электродам 1 и 2 под действием электростатических сил, подвижные пластины 2 втягиваются в воздушные зазоры камер 1. При этом стрелка перемешается по шкале 5. Угол поворота подвижной части находится из равенства вращающего и противодействующего моментов, возникающих в измерительном механизме. Постоянное напряжение U, приложенное к электродам 1 и 2, создает вращающий момент

МВР = (U2/2) (dC/da). (4.20)

Если противодействующий момент создается при помощи упругих элементов, то для установившегося равновесия можно записать уравнение преобразования электростатического измерительного механизма в виде

a = [U2/ (2W)](dC/da), (4.21)

где С - емкость между пластинами; U - измеряемое напряжение.

Из (4.21) следует, что угол отклонения подвижной части не зависит от полярности приложенного напряжения. В случае переменного напряжения угол отклонения подвижной части пропорционален квадрату действующего значения напряжения и выражается формулой (4.21).

Области применения, достоинства и недостатки

Основное применение электростатические приборы нашли для измерения напряжения в цепях постоянного и переменного токов. Выпускаются высоковольтные вольтметры на напряжения до 300 кВ, щитовые вольтметры на напряжения до 15 кВ с частотным диапазоном до 3 МГц классов точности 1,0 и 1,5. Есть вольтметры с частотным диапазоном до 35 МГц. Вольтметры на более низкие напряжения с пределами до 300 В имеют классы точности 0,05 и 0,1. Кроме этого их используют для измерения мощности, сопротивления, индуктивности и других величин.

Выполнение электростатических приборов с тремя электродами (электрометров) позволяет использовать их для измерения мощности и других величин.

Электростатические ваттметры применяются для измерения мощности переменного тока на частотах вплоть до нескольких мегагерц и при малых cosj. Класс точности электростатических ваттметров достигает 0,1-0,2.

Достоинствами электростатических приборов являются:

1) малое собственное потребление мощности, что объясняется малыми токами утечки и малыми диэлектрическими потерями в изоляции, малой емкостью измерительного механизма;

2) большой диапазон измеряемых напряжений;

3) возможность измерений на постоянном и на переменном токе;

4) независимость показаний от частоты в широком диапазоне и формы измеряемого напряжения;

5) независимость показаний от внешних магнитных полей.

К недостаткам электростатических приборов можно отнести:

1) малую чувствительность по напряжению;

2) влияние внешних электростатических полей, что требует экранирование измерительного механизма;

3) неравномерную шкалу (при соответствующем выборе формы подвижных и неподвижных электродов можно получить практически равномерную шкалу на участке от 15-25 % до 100 % от ее номинального значения).

Погрешности электростатических приборов

Для электростатических приборов характерны следующие погрешности:

1) температурная;

2) частотная;

3) от контактной разности потенциалов;

4) от термоЭДС;

5) от поляризации диэлектрика

6) из-за влияния внешних электростатических полей и др.

Температурная погрешность электростатического прибора обусловлена изменениями упругости материала пружин, растяжек и емкости измерительного механизма при изменении температуры.

В приборах класса точности выше 0,5 для компенсации температурной погрешности используются различные конструктивные меры, например, крепление растяжек на термобиметаллических пластинах.

Частотная погрешность обусловлена резонансными явлениями в цепи прибора (это возникает из-за наличия собственной емкости прибора и индуктивности проводов) и изменением сопротивления проводов и растяжек

Погрешность от контактной разности потенциалов возникает из-за разности работ выхода электронов с поверхности электродов в диэлектрик. Уменьшение этой погрешности достигается применением специальной технологии обработки поверхности электродов (контактная разность потенциалов уменьшается до 20-50 мВ).

Погрешность от термоЭДС обусловлена разностью температур на концах проводников, выполняемых из разнородных материалов. Данная погрешность уменьшается при снижении перепада температур в объеме измерительного механизма и выбором материалов проводников.

Погрешность от поляризации диэлектрика появляется вследствие возникновения ЭДС, обусловленной процессом поляризации. Уменьшение погрешности от поляризации достигается выбором диэлектрика с малым значением диэлектрической проницаемости и экранированием диэлектрика от подвижной пластины.

Для уменьшения влияния электростатических полей приборы экранируются. Экран соединяется с одним из зажимов прибора и заземляется.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: