Цикл формирования топологических слоёв

Полупроводниковые микросхемы.

Конструкция полупроводниковой микросхемы полностью определяется её физической структурой (совокупностью слоёв в кристалле, отличающихся материалом и электрофизическими свойствами) и топологией (формой, размерами, относительным расположением отдельных областей и характером межсоединений по поверхности кристалла). Можно также сказать, что структура – это чертёж поперечного сечения кристалла интегральной микросхемы, а топология – вид в плане.

На рис приведен фрагмент структуры микросхемы, представляющей n-p-n-транзистор и включённый в коллекторную цепь резистор, а на рис. 4,б – топология этого же участка. На рис. 4,а цифрами обозначены: 1 – исходная монокристаллическая пластина – подложка; 2 – открытый слой; 3-эпитаксиальный слой (он же коллекторный); 4 – разделительный слой; 5 – базовый слой; 6 – эмиттерный слой; 7 – изолирующий слой с контактными окнами; 8 – слой металлизации; 9 – защитный слой (обычно SiO2).

Рис. Фрагмент интегральной микросхемы: а – структура; б – топология.

Каждый из слоёв 2…6 представляет собой совокупность отдельных островков (областей), имеющих одинаковые толщины, тип проводимости (электронная n или дырочная p) и характер распределения примеси по толщине. Это достигается одновременным введением примеси через окна защитной маски из SiO2, формируемой предварительно на поверхности пластины-кристалла. В отличие от слоёв 2…6 слои 7, 8 и 9 получают путём формирования сплошной плёнки и последующего избирательного травления с использованием фотошаблона. В результате изолирующий слой 7 (SiO2) содержит контактные окна, слой металлизации 8 (обычно Al) – систему соединительных проводников и периферийные монтажные площадки, а слой 9 – окна над монтажными площадками.

Приведённая структура получила название эпитаксиально-планарной и предполагает взаимную изоляцию смежных элементов за счёт обратносмещенных p-n-переходов на границах изолирующего слоя. Высоколегированный скрытый слой (n+) служит для уменьшения сопротивления коллекторов транзисторов и за счёт этого повышения их быстродействия. Области n+ под коллекторными контактами исключают образование потенциального барьера (барьера Шоттки), обеспечивают, таким образом, омический контакт со слаболегированным коллектором и принадлежат эмиттерному слою.

Слои 2…6, находящиеся в объёме полупроводникового кристалла, формируются с помощью однотипного повторяющегося цикла (рис.): “окисление поверхности (SiO2) – фотолитография с образованием оксидной маски – внедрение легирующей примеси через окна маски – стравливание окисла”. Рисунок оксидной маски определяется рисунком фотошаблона, используемого в процессе фотолитографии. Таким образом, для создания всех слоёв требуется комплект фотошаблонов с различными рисунками.

1 2
3 4

Рис. Последовательность формирования топологического слоя в объеме кристалла: 1 - окисление поверхности; 2 - фотолитография; 3 - внедрение примеси; 4 - стравливание окисла.

В соответствии с этим циклом последовательность формирования полупроводниковой структуры выглядит следующим образом. В исходной пластине-подложке p-типа формируются области скрытого слоя (n+). Далее осаждается сплошной монокристаллический (эпитаксиальный) слой кремния n-типа, поверхность которого окисляется. Затем формируются области разделительного слоя (p+) с таким расчётом, чтобы они сомкнулись с подложкой. Образующиеся при этом островки эпитаксиального слоя образуют коллекторный слой (n). Внутри коллекторных областей формируются базовые p-области (базовый слой), а внутри базовых областей – эмиттерные (эмиттерный n+-слой).

В дальнейшем обработка происходит на поверхности: формируются изолирующий слой (SiO2), слой металлизации (Al) и защитный слой (SiO2). При этом используется цикл “нанесение сплошной плёнки – фотолитография”.

Таким образом, для получения рассматриваемой структуры необходим комплект из 8 фотошаблонов.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: