Лекция 28. Статистическая проверка непараметрических гипотез

Третий прием

Четвертый прием Пятый прием

Шестой прием

Седьмой прием

Восьмой прием

Девятый прием

Нулевой непараметрической гипотезой называется гипотеза относительно общего вида функции распределения СВ .

Проверка гипотезы о предполагаемом распределении производится с помощью непараметрических критериев значимости. Принципы построения таких критериев и методика проверки остаются практически теми же, что и при параметрических гипотезах, т.е. проверка непараметрических гипотез производится на основании вычисления некоторой выборочной статистики (критерия), распределение которой получено в предположении истинности нулевой гипотезы и сравнения наблюдаемого значения этой выборочной статистики с критическим значением.

Непараметрические критерии значимости условно можно подразделить на две группы. К первой группе относятся критерии согласия, с помощью которых проверяются нулевые гипотезы относительно общего вида функции распределения. К другой группе непараметрических критериев относятся критерии, с помощью которых проверяется нулевая гипотеза о принадлежности двух выборок одной и той же генеральной совокупности (две генеральные совокупности имеют одну и ту же функцию распределения).

П.1. Критерий согласия Пирсона.

Критерий Пирсона позволяет производить проверку согласия эмпирической функции распределения с гипотетической функцией , принадлежащей к некоторому множеству функций определенного вида (нормальных, показательных, биномиальных и т.д.).

Пусть СВ имеет функцию распределения , принадлежащую некоторому классу функций . Из генеральной совокупности извлечена выборка объема .

Разобьем весь диапазон полученных результатов на частичных интервалов равной длины, и пусть в каждом частичном интервале оказалось измерений, причем . Составим сгруппированный статистический ряд распределения частот:

Интервалы наблюдаемых значений СВ       …     …  
Частоты

Требуется на основе имеющейся информации проверить нулевую гипотезу о том, что гипотетическая функция распределения значимо представляет данную выборку, т.е. .

При проверке нулевой гипотезы с помощью критерия согласия придерживаются следующей последовательности действий:

1) на основании гипотетической функции вычисляют вероятности попадания СВ в частичные интервалы :

;

2) умножая полученные вероятности на объем выборки , получают теоретические частоты частичных интервалов , т.е. частоты, которые следует ожидать, если нулевая гипотеза справедлива;

3) вычисляют выборочную статистику (критерий) :

. (28.1)

Замечание 1. При проверке гипотезы о нормальном распределении СВ вероятности попадания СВ в частичные интервалы находят по формуле: Ф– Ф, где Ф– функция Лапласа (приложение 2).

Если нулевая гипотеза верна, то при распределение выборочной статистики (28.1) независимо от вида функции стремится к распределению с степенями свободы (– число частичных интервалов; – число параметров гипотетической функции , оцениваемых по данным выборки).

Критерий сконструирован таким образом, что чем ближе к нулю наблюдаемое значение критерия , тем вероятнее, что нулевая гипотеза справедлива. Поэтому для проверки нулевой гипотезы применяется критерий с правосторонней критической областью. Следовательно, для того, чтобы проверить нулевую гипотезу, необходимо найти по таблицам квантилей -распределения по заданному уровню значимости и числу степеней свободы критическое значение , удовлетворяющее условию . Сравнивая наблюдаемое значение выборочной статистики , вычисленное по формуле (28.1), с критическим значением , принимаем одно из двух решений:

1) если набл , то нулевая гипотеза отвергается в пользу альтернативной , т.е. считается, что гипотетическая функция не согласуется с результатами эксперимента;

2) если набл <, то считается, что нет оснований для отклонения нулевой гипотезы, т.е. гипотетическая функция согласуется с результатами эксперимента.

Замечание 2. При применении критерия необходимо, чтобы в каждом частичном интервале было не менее 5 элементов. Если число элементов (частота) меньше 5, то рекомендуется объединять такие частичные интервалы с соседними.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: