Признак Вейерштрасса о равномерной сходимости функционального ряда

Если функциональный ряд на [a;b] мажорируется сходящимся числовым рядом равномерно сходится на этом отрезке.

Свойства равномерно сходящегося функционального ряда:

Теорема 1: Если функциональный ряд ,составленный из непрерывных функций на [a;b], равномерно сходится на этом отрезке, то сумма ряда S(x) – тоже будет непрерывной функцией на [a;b].

Рассмотрим функциональный ряд

Этот ряд состоит из непрерывных степенных функций, n частичная сумма ряда

Вычислим сумму ряда:

- сходится, но S(x) – является разрывной функцией.

Вывод: S(x) не сходится равномерно.

Теорема 2: Если функциональный равномерно сходится на [a;b] его можно почленно интегрировать на любом отрезке входящем в [a;b] условием интегрируемости является непрерывность функции .

Пример:

Теорема 3: Если функциональный равномерно сходится на [a;b] и ряд составленный из производных тоже равномерно сходится на [a;b] функциональный ряд можно почленно дифференцировать.

Пример:


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: