Генетические рекомбинации. Особенности рекомбинативной изменчивости у бактерий и эукариотов. Трансформация и ее стадии

 Генетические рекомбинации. Конъюгация, механизмы и этапы конъюгации. F и Hfr – факторы.

 Генетические рекомбинации. Трансдукция, типы трансдукции.

Микроорганизмам, как и клеткам высших организмов свойственны генетические рекомбинации, которые имеют свои особенности. Они определяются прежде всего способом размножения и закономерностями передачи генетического материала. Известно, что генетические рекомбинации у клеток эукариот совершаются в ходе процессов, сопровождающих половое размножение путем реципрокного (взаимного) обмена фрагментами хромосом. При таком обмене генетическим материалом из двух рекомбинирующих родительских хромосом образуются две рекомбинантные хромосомы. Применительно к данным клеткам это означает, что в результате рекомбинаций возникают две рекомбинантные особи.

Прокариотам не свойственно половое размножение. Рекомбинация у них происходит в результате внутригеномных перестроек, заключающихся в изменении локализации генов в пределах хромосомы, или при проникновении в клетку реципиента части ДНК донора.

Последнее приводит к формированию неполной зиготы — мерозиготы. В результате рекомбинаций в мерозиготе образуется только один рекомбинат, генотип которого представлен в основном генотипом реципиента с включенным в него фрагментом ДНК донора. Вследствие этого реципрокность генетических рекомбинаций у бактерий не может быть выявлена.

Рекомбинации подразделяют на законные и незаконные. Законная рекомбинация требует наличия протяженных, комплементарных участков ДНК в рекомбинируемых молекулах. Она происходит только между близкородственными видами микроорганизмов.

Незаконная рекомбинация не требует наличия протяженных комплементарных участков ДНК. Незаконная рекомбинация происходит при участии Is-элементов, которые имеют «липкие концы», обеспечивающие их быстрое встраивание в бактериальную хромосому.

Генетические рекомбинации происходят при участии ряда ферментов в пределах отдельных генов или групп сцеплений генов. Существуют специальные гес-гены, детермирующие рекомбинационную способность бактерий. Передача генетического материала (хромосомных генов) от одних бактерий к другим происходит путем трансформации, трансдукции и конъюгации, а плазмидных генов — путем трансдукции и конъюгации.

Трансформация — непосредственная передача генетического материала (фрагмента ДНК) донора реципиентной клетке.

Процесс трансформации бактерий можно подразделить на несколько фаз:

1) адсорбция ДНК-донора на клетке-реципиенте;

2) проникновение ДНК внутрь клетки-реципиента;

3) соединение ДНК с гомологичным участком хромосомы реципиента с последующей рекомбинацией.

После проникновения внутрь клетки трансформирующая ДНК деспирализуется. Затем происходит физическое включение любой из двух нитей ДНК донора в геном реципиента.

Конъюгация бактерий состоит в переходе генетического материала (ДНК) из клетки-донора («мужской») в клетку-реципиент («женскую») при контакте клеток между собой.

Мужская клетка содержит F-фактор, или половой фактор, который контролирует синтез так называемых половых пилей, или F-пилей. Клетки, не содержащие F-фактора, являются женскими; при получении F-фактора они превращаются в «мужские» и сами становятся донорами. F- фактор располагается в цитоплазме в виде кольцевой двунитчатой молекулы ДНК, т. е. является плазмидой. Молекула F-фактора значительно меньше хромосомы и содержит гены, контролирующие процесс конъюгации, в том числе синтез F-пилей. При конъюгации F-пили соединяют «мужскую» и «женскую» клетки, обеспечивая переход ДНК через конъюгационный мостик или F-пили. Клетки, содержащие F-фактор в цитоплазме, обозначаются F+; они передают F-фактор клеткам, обозначаемым F" («женским»), не утрачивая донорской способности, так как оставляют копии F-фактора. Если F-фактор включается в хромосому, то бактерии приобретают способность передавать фрагменты хромосомной ДНК и называются Hfr-клетками (от англ. high frequency of recombination — высокая частота рекомбинаций), т.е. бактериями с высокой частотой рекомбинаций. При конъюгации клеток Hfr и клеток F" хромосома разрывается и передается с определенного участка (начальной точки) в клетку F", продолжая реплицироваться. Перенос всей хромосомы может длиться до 100 мин.

Переносимая ДНК взаимодействует с ДНК реципиента — происходит гомологичная рекомбинация.

Трансдукция (от лат. transductio — перенос, перемещение) — передача ДНК от бактерии-донора к бактерии-реципиенту при участии бактериофага. Различают три типа трансдукции: неспецифическую или общую, специфическую и абортивную.

Неспецифическая трансдукция. В процессе репродукции фага в момент сборки фаговых частиц в их головку вместе с фаговой ДНК может проникнуть какой-либо фрагмент ДНК бактерии-донора. При этом фаг может утратить часть своего генома и стать дефектным.

Принесенный фагом фрагмент ДНК бактерии-донора способен включаться в гомологическую область ДНК клетки-реципиента путем рекомбинации. Таким образом, при неспецифической трансдукции трансдуцирующие фаги являются только переносчиком генетического материала от одних бактерий к другим, поскольку сама фаговая ДНК не участвует в образовании рекомбинантов (трансдуктантов).

Специфическая трансдукция характеризуется способностью фага переносить определенные гены от бактерии-донора к бактерии-реципиенту. Это связано с тем, что образование трансдуцирующего фага происходит путем выщепления профага из бактериальной хромосомы вместе с генами, расположенными на хромосоме клетки-донора рядом с профагом.

При взаимодействии трансдуцирующих фагов с клетками реципиентного штамма происходит включение гена бактерии-донора вместе с ДНК дефектного фага в хромосому бактерии-реципиента. Бактерии, лизогенированные дефектным фагом, невосприимчивы, как и нее лизогенные клетки, к последующему заражению гомологичным вирулентным фагом.

Абортивная трансдукция. При абортивной трансдукции принесенный фагом фрагмент ДНК бактерии-донора не включается в хромосому бактерии-реципиента, а располагается в ее цитоплазме и может в таком виде функционировать. Во время деления бактериальной клетки трансдуцированный фрагмент ДНК-донора может передаваться только одной из двух дочерних клеток, т.е. наследоваться однолинейно и в конечном итоге утрачиваться в потомстве.

Плазмиды, их свойства и основные генетические функции. Генетический анализ, принципы составления генетических карт. Генная инженерия. Генетические методы диагностики инфекционных заболеваний. Молекулярная гибридизация, полимеразная цепная реакция.

Плазмиды — внехромосомные мобильные генетические структуры бактерий, представляющие собой замкнутые кольца двунитчатой ДНК. По размерам составляют 0,1—5 % ДНК хромосомы. Плаз­миды способны автономно копироваться (реплицироваться) и существовать в цитоплазме клетки, поэтому в клетке может быть несколько копий плазмид. Плазмиды могут включаться (интег­рировать) в хромосому и реплицироваться вместе с ней. Разли­чают трансмиссивные и нетрансмиссивные плазмиды. Трансмиссив­ные (конъюгативные) плазмиды могут передаваться из одной бактерии в другую.

Среди фенотипических признаков, сооб­щаемых бактериальной клетке плазмидами, можно выделить следующие:

1) устойчивость к антибиотикам;

2) образование колицинов;

3) продукция факторов патогенности;

4) способность к синтезу антибиотических веществ;

5) расщепление сложных органических ве­ществ;

6) образование ферментов рестрикции и модификации.

Термин «плазмиды» впервые введен американским ученым Дж. Ледербергом (1952) для обозначения полового фактора бак­терий. Плазмиды несут гены, не обязательные для клетки-хозя­ина, придают бактериям дополнительные свойства, которые в определенных условиях окружающей среды обеспечивают их вре­менные преимущества по сравнению с бесплазмидными бакте­риями.

Некоторые плазмиды находятся под стро­гим контролем. Это означает, что их реплика­ция сопряжена с репликацией хромосомы так, что в каждой бактериальной клетке присутс­твует одна или, по крайней мере, несколько копий плазмид.

Число копий плазмид, находящихся под слабым контролем, может достигать от 10 до 200 на бактериальную клетку.

Для характеристики плазмидных реплико-нов их принято разбивать на группы совмести­мости. Несовместимость плазмид связана с не­способностью двух плазмид стабильно сохра­няться в одной и той же бактериальной клетке. Несовместимость свойственна тем плазмидам, которые обладают высоким сходством репликонов, поддержание которых в клетке регули­руется одним и тем же механизмом.

Некоторые плазмиды могут обратимо встраиваться в бактериальную хромосому и функционировать в виде единого репликона. Такие плазмиды называются интегративными или эписомами.

У бактерий различных видов обнаружены R-плазмиды, несу­щие гены, ответственные за множественную устойчивость к лекарственным препаратам — антибиотикам, сульфаниламидам и др., F-плазмиды, или половой фактор бактерий, определяющий их способность к конъюгации и образованию половых пилей, Ent-плазмиды, детерминирующие продукцию энтеротоксина.

Плазмиды могут определять вирулентность бактерий, напри­мер возбудителей чумы, столбняка, способность почвенных бак­терий использовать необычные источники углерода, контроли­ровать синтез белковых антибиотикоподобных веществ — бактериоцинов, детерминируемых плазмидами бактериоциногении, и т. д. Существование множества других плазмид у микроорганиз­мов позволяет полагать, что аналогичные структуры широко рас­пространены у самых разнообразных микроорганизмов.

Плазмиды подвержены рекомбинациям, мутациям, могут быть элиминированы (удалены) из бактерий, что, однако, не влияет на их основные свойства. Плазмиды являются удобной моделью для экспериментов по искусственной реконструкции генетичес­кого материала, широко используются в генетической инжене­рии для получения рекомбинантных штаммов. Бла­годаря быстрому самокопированию и возможности конъюгационной передачи плазмид внутри вида, между видами или даже родами плазмиды играют важную роль в эволюции бактерий.

Полимеразная цепная реакция позволяет обнаружить микроб в ис­следуемом материале (воде, продуктах, ма­териале от больного) по наличию в нем ДНК микроба без выделения последнего в чистую культуру.

Для проведения этой реакции из исследу­емого материала выделяют ДНК, в которой определяют наличие специфичного для дан­ного микроба гена. Обнаружение гена осу­ществляют его накоплением. Для этого необ­ходимо иметь праймеры комплементарного З'-концам ДНК. исходного гена. Накопление (амплификация) гена выполняется следую­щим образом. Выделенную из исследуемого материала ДНК нагревают. При этом ДНК распадается на 2 нити. Добавляют праймеры. Смесь ДНК и праймеров охлаждают. При этом праймеры, при наличии в смеси ДНК искомо­го гена, связываются с его комплементарными участками. Затем к смеси ДНК и праймера добавляют ДНК-полимеразу и нуклеотиды. Устанавливают температуру, оптимальную для функционирования ДНК-полимеразы. В этих условиях, в случае комплементарное™ ДНК гена и праймера, происходит присоединение нуклеотидов к З'-концам праймеров, в резуль­тате чего синтезируются две копии гена. После этого цикл повторяется снова, при этом ко­личество ДНК гена будет увеличиваться каждый раз вдвое. Проводят реакцию в специальных приборах — амплификаторах. ПЦР применяется для диагностики вирусных и бактериальных инфекций.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: