Выборочный частный коэффициент корреляции

15. Процедура проверки на значимость выборочного частного коэффициента корреляции

16.
Естественно, что для всех математических определений или величин существуют свои формулы, по которым они вычисляются. Ею обладает и коэффициент корреляции Спирмена. Формула у него следующая:

С первого взгляда формула не совсем понятна, но если разобраться, все очень легко вычисляется: n - это количество признаков или показателей, которые проранжированы.
d - разность определенных двух рангов, соответствующих конкретным двум переменным каждого испытуемого.
∑d2 - сумма всех квадратов разностей рангов признака, квадраты которых вычисляются отдельно для каждого ранга.

Для проверки связи признаков между собой необходимо выполнить определенные действия:

Выдвигается нулевая гипотеза (H0), она же основная, затем формулируется другая, альтернативная первой (H1). Первая гипотеза будет заключаться в том, что коэффициент корреляции Спирмена равняется 0 - это значит, что связи не будет. Вторая, наоборот, гласит, что коэффициент не равен 0, тогда связь есть. Следующим действием будет нахождение наблюдаемого значения критерия. Оно находится по основной формуле коэффициента Спирмена. Далее находятся критические значения заданного критерия. Это можно сделать только с помощью специальной таблицы, где отображаются различные значения по заданным показателям: уровень значимости (l) и число, определяющее объем выборки (n). Теперь нужно сравнить два полученных значения: установленного наблюдаемого, а также критического. Для этого необходимо построить критическую область. Нужно начертить прямую линию, на ней отметить точки критического значения коэффициента со знаком "-" и со знаком"+". Слева и справа от критических значений полукругами от точек откладываются критические области. Посередине, объединяя два значения, отмечается полукругом ОПГ. После этого делается вывод о тесноте связи между двумя признаками.

17. Предпосылки -регрессионного анализа:
1) Наличие данных по достаточно большой совокупности явлений. Обычно считается, что число наблюдений должно быть в 5-6 раз, случи в 10 р., чем число факторов.
2) Качественная однородность изучаемых единиц.
3) Проверка на однородность и нормальность распределения. На однородность по коэффициенту корреляционности на нормальность по правилу трех сигм.
4) Включаемые в исследование факторы должны быть независимы друг от друга, т.к. наличие тесной связи между ними свидетельствует о том, что они характеризуют одни и те же стороны изучаемого явления и дублируют друг друга.
Основная задача регрессионного анализа состоит в количественном определении тесноты связи между двумя признаками при парной связи и между результативными и несколькими факторными признаками при многофакторной связи и статистической оценке надежности установленной связи.











Свойства оценок МНК.

В тех случаях, когда предпосылки выполняются, оценки, полученные по МНК, будут обладать свойствами несмещенности, состоятель­ности и эффективности.

Несмещенностьоценки означает, что математическое ожидание остатков равно нулю. Если оценки обладают свойством несме­щенности, то их можно сравнивать по разным исследованиям.

Для практических целей важна не только несмещенность, но и эффективность оценок. Оценки считаются эффективными, ес­ли они характеризуются наименьшей дисперсией. Поэтому не­смещенность оценки должна дополняться минимальной диспер­сией.

Степень достоверности доверительных интервалов парамет­ров регрессии обеспечивается, если оценки будут не только не­смещенными и эффективными, но и состоятельными. Состоя­тельность оценок характеризует увеличение их точности с увели­чением объема выборки.

Дня оценки параметров регрессионного уравнения наиболее часто используют метод наименьших квадратов (МНК).

Метод наименьших квадратов дает оценки, имеющие наименьшую дисперсию в классе всех линейных оценок, если выполняются предпосылки нормальной линейной регрессионной модели.

МНК минимизирует сумму квадратов отклонения наблюдаемых значений от модельных значений .

Согласно принципу метода наименьших квадратов, оценки и находятся путем минимизации суммы квадратов

по всем возможным значениям и при заданных (наблюдаемых) значениях .

В результате применения МНК получаем формулы для вычисления параметров модели парной регрессии.

(3)

Такое решение может существовать только при выполнении условия

что равносильно отличию от нуля определителя системы нормальных уравнений. Действительно, этот определитель равен

Последнее условие называется условием идентифицируемости модели наблюдений , и означает, что не все значения совпадают между собой. При нарушении этого условия все точки , лежат на одной вертикальной прямой

Оценки и называют оценками наименьших квадратов. Обратим внимание на полученное выражение для параметра . В это выражение входят суммы квадратов, участвовавшие ранее в определении выборочной дисперсии

и выборочной ковариации так что, в этих терминах параметр можно получить следующим образом:

= = =

=

20. Свойства оценок, полученных с помощью МНК:

1. Линейность оценок – оценки параметров и представляют собой линейные комбинации наблюдаемых значений объясняемой переменной .

2. Несмещённость оценок:

3. Состоятельность оценок:

4. Эффективность – данное свойство означает, что оценка имеет минимальную дисперсию в заданном классе оценок:


Теорема Гаусса-Маркова: если выполнены условия Гаусса-Маркова, тогда оценки , полученные с помощью метода наименьших квадратов, являются линейными, несмещёнными, эффективными и состоятельными оценками.






Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: