Законы внешнего фотоэффекта

  1. Закон Столетова: при неизменном спектральном составе электромагнитных излучений, падающих на фотокатод, фототок насыщения пропорционален энергетической освещенности катода (иначе: число фотоэлектронов, выбиваемых из катода за 1 с, прямо пропорционально интенсивности излучения):
    и
  2. Максимальная начальная скорость фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой.
  3. Для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота ν0 света (зависящая от химической природы вещества и состояния поверхности), ниже которой фотоэффект невозможен.

 

19. Фото́н (от др.-греч. φῶς, род. пад. φωτός, «свет») — элементарная частица, квант электромагнитного излучения. Это безмассовая частица, способная существовать только двигаясь со скоростью света. Электрический заряд фотона равен нулю. Фотон — это элементарная частица, обладающая энергией

уравнение Эйнштейна для фотоэффекта.

Оно представляет собой закон сохранения энергии в применении к фотоэффекту. Это уравнение записано для однофотонного фотоэффекта, когда речь идет о вырывании электрона, не связанного с атомом (молекулой).

 

20. Энергия фотона

e =hv= ,

где h=6.6*10-34 Дж*с - постоянная Планка, = h/2p=1.055*10-34 Дж*с также постоянная Планка, w=2pv - круговая частота.

 

Масса фотона определяется исходя из закона о взаимосвязи массы и энергии (Е=mc2)

Импульс фотона. Для любой релятивиской частицы энергия ее Поскольку у фотона m0=0, то импульс фотона

т.е. длина волны обратно пропорциональна импульсу.

Давление и преломление света объясняются как волновой, так и кванто­вой теориями. Таким образом, электромаг­нитное излучение обнаруживает удиви­тельное единство, казалось бы, взаимо­исключающих свойств — непрерывных (во­лны) и дискретных (фотоны), которые взаимно дополняют друг друга.

Основные уравнения (см. §205), свя­зывающие корпускулярные свойства элек­тромагнитного излучения (энергия и им­пульс фотона) с волновыми свойствами (частота или длина волны):

eg=hn, pg=hn/c=h/l.

21. А́том (от др.-греч. ἄτομος — неделимый) — наименьшая химически неделимая часть химического элемента, являющаяся носителем его свойств. Атом состоит из атомного ядра и электронов. Ядро атома состоит из положительно заряженных протонов и незаряженных нейтронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом. Атомы классифицируются по количеству протонов и нейтронов в ядре: количество протонов определяет принадлежность атома некоторому химическому элементу, а число нейтронов — изотопу этого элемента.

Атомы различного вида в разных количествах, связанные межатомными связями, образуют молекулы.

Бо́ровская моде́ль а́тома (Моде́ль Бо́ра) — полуклассическая модель атома, предложенная Нильсом Бором в 1913 г. За основу он взял планетарную модель атома, выдвинутую Резерфордом. Однако, с точки зрения классической электродинамики, электрон в модели Резерфорда, двигаясь вокруг ядра, должен был бы излучать непрерывно, и очень быстро, потеряв энергию, упасть на ядро. Чтобы преодолеть эту проблему Бор ввел допущение, суть которого заключается в том, что электроны в атоме могут двигаться только по определенным (стационарным) орбитам, находясь на которых они не излучают, а излучение или поглощение происходит только в момент перехода с одной орбиты на другую. Причем стационарными являются лишь те орбиты, при движении по которым момент количества движения электрона равен целому числу постоянных Планка[1]: .

 

Используя это допущение и законы классической механики, а именно равенство силы притяжения электрона со стороны ядра и центробежной силы, действующей на вращающийся электрон, он получил следующие значения для радиуса стационарной орбиты Rn и энергии En находящегося на этой орбите электрона:

Здесь me — масса электрона, Z — количество протонов в ядре, ε0 — диэлектрическая постоянная, e — заряд электрона.

22. Дифракция частиц, рассеяние микрочастиц (электронов, нейтронов, атомов и т.п.) кристаллами или молекулами жидкостей и газов, при котором из начального пучка частиц данного типа возникают дополнительно отклонённые пучки этих частиц; направление и интенсивность таких отклонённых пучков зависят от строения рассеивающего объекта.

Дифракция частиц может быть понята лишь на основе квантовой теории. Дифракция — явление волновое, оно наблюдается при распространении волн различной природы: дифракция света, звуковых волн, волн на поверхности жидкости и т.д. Дифракция при рассеянии частиц, с точки зрения классической физики, невозможна.

Формула де Бройля устанавливает зависимость длины волны λ, связанной с движущейся частицей вещества, от импульса p частицы:

где m — масса частицы, v — ее скорость, h — постоянная Планка. Волны, о которых идет речь, называются волнами де Бройля.

Другой вид формулы де Бройля:

где — волновой вектор, модуль которого — волновое число — есть число длин волн, укладывающихся на 2π единицах длины, — единичный вектор в направлении распространения волны, Дж·с.

Корпускуля́рно-волново́й дуали́зм — принцип, согласно которому любой объект может проявлять как волновые, так и корпускулярные свойства. Был введён при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. Дальнейшим развитием принципа корпускулярно-волнового дуализма стала концепция квантованных полей в квантовой теории поля.

Как классический пример, свет можно трактовать как поток корпускул (фотонов), которые во многих физических эффектах проявляют свойства электромагнитных волн. Свет демонстрирует свойства волны в явлениях дифракции и интерференции при масштабах, сравнимых с длиной световой волны. Например, даже одиночные фотоны, проходящие через двойную щель, создают на экране интерференционную картину, определяемую уравнениями Максвелла.

23. волновые характеристики микрообъектов связаны такими же количественными соотношениями, как и у фотона:

24. Функцию Yназывают волновой функций или пси-функцией. Она, как правило, бывает комплексной.

Интепретацию волновой функции дал в 1926 г. Борн: квадрат модуля волновой функции определяет вероятность того, что частица будет обнаружена в пределах объема dV:

dP =|Y| 2 dV=YY*dV (17)

где Y * - комплексно - сопряженная волновая функция.

Величина |Y| 2=YY* = dP/ dV - имеет смысл плотности вероятности.



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: