Выбор метода определения запыленности воздуха

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к проведению и расчёту индивидуального задания «Построение математической модели запылённости воздуха (расчёт регрессионных моделей второго порядка с использованием рототабельного планирования) по дисциплине «Моделирование и прогнозирование состояния окружающей среды» для студентов специальности экология

 

 

 

 

 

.  

 

 

.

Днепропетровск НМетАУ 2011

 


МИНИСТЕРСТВО ОБРАЗОВАНИЯ УКРАИНЫ

 

НАЦИОНАЛЬНАЯ МЕТАЛЛУРГИЧЕСКАЯ АКАДЕМИЯ УКРАИНЫ

 

 


МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к проведению и расчёту индивидуального задания «Построение математической модели запылённости воздуха (расчёт регрессионных моделей второго порядка с использованием рототабельного планирования)» по дисциплине «Моделирование и прогнозирование состояния окружающей среды» для студентов специальности экология

 

Утверждено

на заседании кафедры

ИЭ и ОТ

Протокол № __ от 31.01.11

 

.  

 

 

Днепропетровск НМетАУ 2011

 

 

УДК 539.1,03/06

 

Методические указания к проведению и расчёту индивидуального задания «Построение математической модели запылённости воздуха» по дисциплине «Моделирование и прогнозирование состояния окружающей среды» для студентов специальности экология / Сост.: В.П.Бобылев, А.В.Саввин. - Днепропетровск: НМетАУ, 2011. - 16 с.

 

 

 

Дана теоретическая оценка пыления шихты, описана схема установки для определения запылённости воздуха и подготовка её к работе. На основании опытных данных построена модель пыления шихты. Работа может быть использована при проведении индивидуальных заданий по дисциплине «Моделирование и прогнозирование состояния окружающей среды» для студентов специальности экология

.

 

 

Составители: В.П.Бобылев, канд.техн.наук, доц.

                   А.В.Саввин, канд.техн.наук, доц.

Ответственный за выпуск С.М.Крышын, канд.техн.наук, доц.

Рецензент М.П.Сухой, канд. техн. наук, доц. /УГХТУ/

Редактор   О.И.Лукьянец

 

 

Подписано к печати 01.02.11. Формат 60*84 1/16. Бумага типогр.

Печать плоская. Уч.-изд.л. 0,65. Усл. печ.л. 0,64

Тираж 100 экз. Заказ №__

 

Национальная металлургическая академия Украины,

320635, Днепропетровск, пр. Гагарина, 4

 

ООО Фирма «Сервис», 320005, пр. Гагарина, 21    

 

Введение

 

В наше время человечество столкнулось с необходимостью решения ряда экологических проблем. В чёрной металлургии – это загрязнение воздушного и водного бассейнов, а также необходимость складирования огромного количества отходов. Основными отходами металлургического производства являются шламы и шлаки. Агломерационные шламы образуются при гидроудалении пыли из мешков «мультициклонов», из аппаратов мокрой очистки технологических и аспирационных газов. В отдельных случаях шламы образуются при промывке трубопроводов, уборке помещений, при гидроочистке вагонов. Удельный выход шламов газоочисток колеблется от 10 до 15 кг на тонну агломерата. Вынос пыли в кислородно-конверторных агрегатах с донной продувкой составляет 25 кг на тонну стали, в то же время в конверторах с верхней продувкой – 45-60 кг на тонну стали. Источником выделения значительного количества пыли является работа оборудования и агрегатов, транспортировка и перегрузка сыпучих материалов.

Находясь в открытом складировании, пылевидные фракции под воздействием солнечной энергии и ветровых потоков переходят в аэрозоли и мигрируют в приземном слое на значительные расстояния, загрязняя воздушный бассейн, привнося в почву и в открытые водоёмы оксиды тяжёлых металлов. А под действием осадков в виде металлосодержащих солей и других соединений попадают в подпочвенные воды, изменяют их химический состав, что не редко приводит к деградации экологической системы.

Среди задач прикладной и теоретической экологии далеко не последнее место занимает прогнозирование поведение экосистем под действием тех или иных факторов, выбор оптимальной стратегии эксплуатации экосистемы, экологическая оценка различных технологий промышленности и сельского хозяйства и т. д. Средством решения этих и многих других задач является математическое моделирование - построение математических моделей и анализ их подходящими средствами современной математики. Математическая модель реального объекта - это такое его отображение, которое позволяет описать существенные стороны объекта языком математической логики и математических формул.

Но построение моделей реальных систем, с которыми человек сталкивается на практике, очень сложно из-за необходимости учитывать большое количество факторов, влияющих на систему. Поэтому, в этом индивидуальном задании необходимо рассчитать и построить модели влияния различных факторов на пыление шламосодержащей шихты шихты.

 



Выбор метода определения запыленности воздуха

 

В данной работе рассмотрим зависимость пыления шихты от некоторых факторов в лабораторных условиях с помощью следующей установки.

Рис. 1 Схема установки для определения запылённости воздуха

где: 1 – приборный отсек; 2 – ротаметры; 3 – ручка регулировки расхода воздуха ротаметра; 4 – тумблер установки; 5 – тумблер аспиратора; 6 – тумблер вентилятора; 7 – шланг; 8 – ручка пылевой камеры; 9 – рукоятка дозатора с пылью; 10 – открывающаяся стенка пылевой камеры; 11 – патрон с фильтром.

Для определения запыленности воздуха используются различные методы, в том числе:

- весовой (гравиметрический) метод;

- счетный (колламетрический) с микроскопическим анализом размеров, дисперсного состава и структуры пылевых частиц.

 

В данной работе, изучается весовой метод, который признан стандартным. Сущность этого метода заключается в просасывании определенного объема воздуха через взвешенный до отбора фильтр. По увеличению массы фильтра за счет осаждения на нем пыли определяется ее весовое содержание в пересчете на 1м3 воздуха.

                                                , где                  (1)

n – весовая концентрация пыли;

m1 – масса фильтра до отбора пыли, (мг);

m2 – масса фильтра после отбора пыли, (мг)

V0 – объем воздуха, прошедшего через фильтр (м3), приведенный к нормальным условиям (Т = 0°С; Р = 760 мм. рт. ст.)

 

 

                                              , где                 (2)

 

T – температура анализируемого воздуха, (К);

В – барометрическое давление, (мм. рт. ст.)

Vt – количество воздуха, прошедшего через фильтр, при T и давлении В, (м3)

                                                  , где                  (3)

 

Q – расход воздуха за время опыта (л/мин);

t – время проведения опыта – продолжительность работы аппарата после установки фильтра, (мин.)

 

Подставив формулы (2) и (3) в выражение (1), получим:

 

 

2. Выбор факторов

 

На пыление шихты влияют следующие факторы: частота вращения, время работы лабораторной установки, влажность шихты, её химический и фракционный состав. При использовании большого числа факторов сложность расчётов резко возрастает. Поэтому для построения математической модели рассмотрим влияние только двух факторов частота вращения щётки и время работы установки при постоянной величине влажности исходного материала.

Обозначим:

х1 – время работы установки (измерялось в секундах);

х2 – частота вращения щётки, соединённой с двигателем (измерялось косвенно по напряжению, В)

 

3. Область определения факторов, выбор нулевых уровней и  интервала варьирования факторов

 

Обычно вначале рассматривают области определения факторов, уточненные в предварительном эксперименте. Далее из области определения факторов выбирают нулевые уровни и интервалы варьирования, таким образом, выделяется часть области для планирования эксперимента.

    Правильный выбор нулевых уровней и интервалов варьирования факторов имеет решающее значение для дееспособности математической модели.

По результатам проведения предварительного эксперимента в основной эксперимент были взяты следующие значения параметров.   

       Наименования Х1 Х2
Нулевой уровень «0» 30 200
Верхний уровень «+1» 40 215
Нижний уровень «-1» 20 185
Уровень «+1,41» 44,1 221,15
Уровень «-1,41» 15,9 178,85

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: