Кулоновское отталкивание протонов

Энергия связи нуклонов в ядре уменьшается из-за кулоновского отталки­вания между протонами. Это кулоновское отталкивание является дальнодействующим в отличие от "контактного" сильного взаимодействия, действующего только между соприкасающимися нуклонами. Для легких ядер эффект кулоновского отталкивания не играет существенной роли, но для тяжелых ядер ситуация уже иная. В самом деле, энергия кулоновского отталкивания определяется попарным взаимодействием всех Z протонов ядра и потому пропорциoнальна Z(Z-l), т.е. пропорциональна Z2 при Z>>1. Энергия притяжения нуклонов из-за сильного взаимодействия, как уже отмечалось, пропорциональна пол ному числу нуклонов А. Так как числа протонов и нейтронов в устойчивых ядpax приблизительно одинаковы, то эта энергия фактически пропорциональна Z. Поэтому с ростом Z роль кулоновской энергии увеличивается. Этим объясняется уменьшение удельной энергии связи тяжелых ядер с возрастанием Z.

Ядерные связи между нуклонами наиболее прочны, когда числа протонов i нейтронов Z и N одинаковы, т.е. в ядре как бы образуются протон-нейтронны пары. Поэтому у легких стабильных ядер, где роль кулоновского взаимодействия невелика, числа протонов и нейтронов одинаковы. Однако у ядер с большими атомными номерами для обеспечения устойчивости требуются дополни тельные нейтроны. Это обусловлено возрастанием относительной роли кулоновского взаимодействия между протонами. Устойчивость ядра с ростом Z достигается вплетением все большего числа нейтронов. У ядер элементов, еле дующих за свинцом (Z > 82), уже так много протонов, что полная их стабильность оказывается вообще невозможной.

Наибольшей устойчивостью и распространенностью в природе отличаются ядра, у которых число протонов или число нейтронов равно одному из так называемых магических чисел: 2, 8, 20, 28, 50, 82, 126. Если у ядра одновременно являются магическими как число нейтронов, так и число протонов, то таки дважды магические ядра отличаются особенно большой устойчивостью. Таких ядер всего пять: Не, О, Са, Са, РЬ. Повышенная устойчивость магических ядер объясняется так называемой оболоченной моделью ядра.

 

Радиоактивность

Наряду со стабильными ядрами существуют радиоактивные ядра, в которых происходит самопроизвольное изменение состава. Большая часть известных радиоактивных ядер получена искусственно путем бомбардировки мишеней различными частицами. Известно несколько видов радиоактивного распада.

Альфа-распад. При a-распадеиз ядра спонтанно вылетает a-частица - ядро атома гелия Не. При этом зарядовое число Z ядра в соответствии с законом сохранения электрического заряда уменьшается на два и образуется ядро нового химического элемента, который сдвинут влево относительно исходного на две клетки периодической системы.

Бета-распад. При b-распадеиз ядра вылетает электрон и электронное антинейтрино. Существование этой электрически нейтральной частицы было предположено Паули для объяснения кажущегося нарушения закона сохранения энергии в элементарном акте b-распада. В b-распаде распределение энергии между вылетающим электроном и антинейтрино имеет случайный характер. Поэтому в отличие от a-частиц, вылетающих из данного ядра с вполне определенной энергией, вылетающие электроны могут иметь разную энергию.

При b-распаде вылетающий электрон не существует внутри ядра, а образуется там при превращении нейтрона в протон. В этом смысле говорят, что b-распад – это не внутриядерный, а внутринуклонный процесс он затрагивает более глубокие изменения структуры вещества, чем a-распад. Теория b-распада была разработана Ферми на основе предположения о так называемом слабом взаимодействии, описывающем превращение нейтрона в протон.

При b-распаде массовое число А ядра не меняется, а зарядовое число Z увеличивается на единицу: образуется новый химический элемент, который двинут в периодической системе вправо на одну клетку.

Гамма-распад. В отличии от a- и b-радиоактивных распадов так называемая g-радиоактивность ядер не связана с изменением внутренней структуры ядра и не сопровождается изменением зарядового или массового чисел. Вылет из ядра g-кванта (фотона высокой энергии) происходит при спонтанном переходе ядра из некоторого долгоживущего возбужденного состояния в основное состояние.

Возбуждение ядер возникает при их радиоактивном (альфа или бета) распаде, при ядерных реакциях или делении ядер. Верхняя граница энергий g-квантов при a-распаде составляет ~ 0,5 МэВ, а при b-распаде ~ 3 МэВ. Гамма-излучение является сильно проникающим излучением. Длина пробега в воздухе

-излучения составляет ~1×104 см, а в металлах порядка нескольких сантиметров. Это свойство g-излучения - большая проникающая способность, используется в дефектоскопии для контроля качества сварных соединений ответственных деталей: трубопроводов, котлов, корпусов реакторов и т.д. Длина волны g-излучения при радиоактивных распадах лежит в пределах 1 -0,001 . В ускорителях получают g-излучение с длиной волны до 1×10-6 .

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: