Решение алгебраических уравнений

ТИПЫ УРАВНЕНИЙ

Алгебраические уравнения. Уравнения вида fn = 0, где fn – многочлен от одной или нескольких переменных, называются алгебраическими уравнениями. Многочленом называется выражение вида

fn = a 0 xiyj... vk + a 1 x l ym... vn + ¼ + asxpyq... vr,

где x, y,..., v – переменные, а i, j,..., r – показатели степеней (целые неотрицательные числа). Многочлен от одной переменной записывается так:

f (x) = a 0 xn + a 1 xn – 1 +... + an – 1 x + an

или, в частном случае, 3 x 4x 3 + 2 x 2 + 4 x – 1. Алгебраическим уравнением с одним неизвестным называется любое уравнение вида f (x) = 0. Если a 0 ¹ 0, то n называется степенью уравнения. Например, 2 x + 3 = 0 – уравнение первой степени; уравнения первой степени называются линейными, так как график функции y = ax + b имеет вид прямой. Уравнения второй степени называются квадратными, а уравнения третьей степени – кубическими. Аналогичные названия имеют и уравнения более высоких степеней.

Трансцендентные уравнения. Уравнения, содержащие трансцендентные функции, такие, как логарифмическая, показательная или тригонометрическая функция, называются трансцендентными. Примером могут служить следующие уравнения:

где lg – логарифм по основанию 10.

Дифференциальные уравнения. Так называются уравнения, содержащие одну или несколько функций и их производные или дифференциалы. Дифференциальные уравнения оказались исключительно ценным средством точной формулировки законов природы.

Интегральные уравнения. Уравнения, содержащие неизвестную функцию под знаком интеграла, например, f (s) = ò K (s, t) f (t) dt, где f (s) и K (s, t) заданы, а f (t) требуется найти.

Диофантовы уравнения. Диофантовым уравнением называется алгебраическое уравнение с двумя или более неизвестными с целыми коэффициентами, решение которого ищется в целых или рациональных числах. Например, уравнение 3 x – 5 y = 1 имеет решение x = 7, y = 4; вообще же его решениями служат целые числа вида x = 7 + 5 n, y = 4 + 3 n.

РЕШЕНИЕ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

Для всех перечисленных выше типов уравнений общих методов решения не существует. И все же во многих случаях, особенно для алгебраических уравнений определенного типа, имеется достаточно полная теория их решения.

Линейные уравнения. Эти простые уравнения решаются путем их сведения к эквивалентному уравнению, из которого непосредственно видно значение неизвестного. Например, уравнение x + 2 = 7 можно свести к эквивалентному уравнению x = 5 вычитанием числа 2 из правой и левой частей. Шаги, совершаемые при сведении простого уравнения, например, x + 2 = 7, к эквивалентному, основаны на использовании четырех аксиом.

1. Если равные величины увеличить на одно и то же число, то результаты будут равны.

2. Если из равных величин вычесть одно и то же число, то результаты будут равны.

3. Если равные величины умножить на одно и то же число, то результаты будут равны.

4. Если равные величины разделить на одно и то же число, то результаты будут равны.

Например, чтобы решить уравнение 2 x + 5 = 15, мы воспользуемся аксиомой 2 и вычтем число 5 из правой и левой частей, в результате чего получим эквивалентное уравнение 2 x = 10. Затем мы воспользуемся аксиомой 4 и разделим обе части полученного уравнения на 2, в результате чего исходное уравнение сведется к виду x = 5, что и является искомым решением.

Квадратные уравнения. Решения общего квадратного уравнения ax 2 + bx + c = 0 можно получить с помощью формулы

Таким образом, существуют два решения, которые в частном случае могут совпадать.

Другие алгебраические уравнения. Явные формулы, аналогичные формуле для решения квадратного уравнения, можно выписать только для уравнений третьей и четвертой степеней. Но и эти формулы сложны и далеко не всегда помогают легко находит корни. Что же касается уравнений пятой степени или выше, то для них, как доказал Н.Абель в 1824, нельзя указать общую формулу, которая выражала бы корни уравнения через его коэффициенты при помощи радикалов. В отдельных частных случаях уравнения высших степеней удается легко решить, факторизуя их левую часть, т.е. разлагая ее на множители.

Например, уравнение x 3 + 1 = 0 можно записать в факторизованном виде (x + 1)(x 2x + 1) = 0. Решения мы находим, полагая каждый из множителей равным нулю:

Таким образом, корни равны x = –1, , т.е. всего 3 корня.

Если уравнение не факторизуется, то следует воспользоваться приближенными решениями. Основные методы нахождения приближенных решений были разработаны Горнером, Ньютоном и Греффе. Однако во всех случаях существует твердая уверенность в том, что решение существует: алгебраическое уравнение n -й степени имеет ровно n корней.

Системы линейных уравнений. Два линейных уравнения с двумя неизвестными можно записать в виде

Решение такой системы находится с помощью определителей

Оно имеет смысл, если Если же D = 0, то возможны два случая. (1) По крайней мере один из определителей и отличен от нуля. В этом случае решения уравнений не существует; уравнения несовместны. Численный пример такой ситуации – система

(2) Оба определителя равны нулю. В этом случае второе уравнение просто кратно первому и существует бесконечное число решений.

Общая теория рассматривает m линейных уравнений с n переменными:

Если m = n и матрица (aij) невырожденна, то решение единственно и может быть найдено по правилу Крамера:

где Aji – алгебраическое дополнение элемента aij в матрице (aij). В более общем плане существуют следующие теоремы. Пусть r – ранг матрицы (aij), s – ранг окаймленной матрицы (aij; bi), которая получается из aij присоединением столбца из чисел bi. Тогда: (1) если r = s, то существует n – r линейно независимых решений; (2) если r < s, то уравнения несовместны и решений не существует.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: