Генотип как целое. Ядерная и цитоплазматическая наследственность

Генотип - генетическая (наследственная) конституция организма, совокупность всех его генов. В современной генетике рассматривается не как механический набор независимо функционирующих генов, а как единая система, в которой любой ген может находиться в сложном взаимодействии с остальными генами.

Большинство генов может существовать в нескольких модификациях аллелях, а поскольку число генов составляет десятки тысяч, то практически все люди различаются по генотипам. Исключение представляют однояйцевые монозиготные близнецы,имеющие совершенно одинаковые генотипы. Далеко не все гены проявляют своё действие либо находятся между собой в сложных взаимосвязях и взаимодействиях.

Патологические гены, которые обусловливают наследственные болезни и аномалии развития, также разнородны. Одни из них — доминантные — проявляют своё действие при наличии на гомологичной хромосоме нормального гена. В этих случаях болезнь передаётся из поколения в поколение и заболевают в среднем до 50% детей больного. Другие гены — рецессивные — проявляют своё действие лишь в тех случаях, когда ребёнок наследует патологический ген от каждого из клинически здоровых родителей. В таких семьяхслучаев аналогичного заболевания у других родственников, как правило, нет. Вероятность повторного рождения больного ребёнка в такой семье — 25%. Существуют и другие варианты действия патологических генов.

Цитоплазматическая наследственность (внеядерная, нехромосомная, плазматическая), преемственность материальных структур и функциональных свойств организма, которые определяются и передаются факторами, расположенными вцитоплазме. Совокупность этих факторов — плазмагенов, или внеядерных генов, составляетплазмон(подобно тому, как совокупность хромосомных генов —геном). Плазмагены находятся в самовоспроизводящихся органеллах клетки —митохондрияхипластидах(в том числе хлоропластах и др.). Указанием на существование Н. ц. служат, прежде всего, наблюдаемые при скрещиваниях отклонения от расщеплений признаков, ожидаемых на основезаконов Менделя.

Ядерная наследственность.

Установлено, что некоторые мутации пластид вызываются ядерными генами, контролирующими отчасти и функционирование пластид. Показано также, что количество ДНК в митохондриях недостаточно для того, чтобы нести всю информацию об их функциях и строении; т. о., и структура митохондрий, по крайней мере частично, определяется геномом. Ядерные и внеядерные гены могут взаимодействовать и при реализации фенотипа.

Генетика популяций. Закон Харди-Вайнберга.

Методы изучения наследственности человека: генеалогический, близнецовый, цитогенетический, генетика соматических клеток, популяционно-статистический, моделирования, методы изучения ДНК. Их сущность и возможности.

Наследственность, присущее всем организмам свойство повторять в ряду поколений одинаковые признаки и особенности развития; обусловлено передачей в процессе размножения от одного поколения к другому материальных структур клетки, содержащих программы развития из них новых особей. Тем самым Н. обеспечивает преемственность морфологической, физиологической и биохимической организации живых существ, характера их индивидуального развития, илионтогенеза.

Цель изучения наследственности человека — выявление генетических основ заболеваний, поведения, способностей, таланта. Результаты генетических исследований: установлена природа ряда заболеваний (наличие лишней хромосомы у людей с синдромом Дауна, замена одной аминокислоты на другую в молекуле белка у больных серповиднокле-точной анемией; обусловленность доминантными генами карликовости, близорукости).

Методы изучения генетики человека, зависимость их использования от биологических, психологических и социальных особенностей (позднее появление потомства, его малочисленность, неприменимость метода гибридологического анализа).

Генеалогический метод изучения наследственности человека— изучение родословной семьи с целью выявления особенностей наследования признака в ряду поколений. Выявлено: доминантный и рецессивный характер ряда признаков, генетическая обусловленность развития музыкальных и других способностей, наследственный характер заболеваний диабетом, шизофренией, предрасположенности к туберкулезу.

Цитогенетический метод — изучение структуры и числа хромосом в клетках, выявление свыше 100 изменений в структуре хромосом, изменение числа хромосом (болезнь Дауна).

Близнецовый метод — изучение наследования признаков у близнецов, влияния генотипа и среды на развитие их биологических и психологических особенностей.

Цитологический метод.

Цитогенетический метод используют для изучения нормального кариотипа человека, а также при диагностике наследственных заболеваний, связанных с геномными и хромосомными мутациями.

Кроме того, этот метод применяют при исследовании мутагенного действия различных химических веществ, пестицидов, инсектицидов, лекарственных препаратов и др.

Цитологический контроль необходим для диагностики хромосомных болезней, связанных с ансуплоидией и хромосомными мутациями.

Биохимический метод.

Наследственные заболевания, которые обусловлены генными мутациями, изменяющими структуру или скорость синтеза белков, обычно сопровождаются нарушением углеводного, белкового, липидного и других типов обмена веществ. Наследственные дефекты обмена можно диагностировать посредством определения структуры измененного белка или его количества, выявления дефектных ферментов или обнаружения промежуточных продуктов обмена веществ во внеклеточных жидкостях организма (крови, моче, поте и т.д.). Например, анализ аминокислотных последо- вательностей мутационно измененных белковых цепей гемоглобина позволил выявить несколько наследственных дефектов, лежащих в основе ряда заболеваний, — гемоглобинозов. Так, при сер- повидно-клеточной анемии у человека аномальный гемоглобин вследствие мутации отличается от нормального заменой только одной аминокислоты (глутаминовой кислоты на валин).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: