Ионный гомеостаз клетки

Среди неорганических компонентов, в той или иной степени участвующих в метаболизме клеток и тканей, первое по важности место принадлежит ионам металлов (рис. 47).

 

Рис. 47. Биологически важные металлы

 

Накапливаемые[A18] клетками в определенных соотношениях или выбрасываемые из клеток в окружающую среду ионы металлов играют роль специфических регуляторов ферментных систем.

 

 

Для всех перечисленных элементов, по-видимому, существуют способы, благодаря которым клетки регулируют их содержание. Для некоторых элементов системы аккумуляции или выбро-са из клетки так мощны, что обнаруживается яркая неравномерность в распределении ионов по обе стороны клеточной мембраны (табл. 9). Так, клетки всех тканей животных характеризуются электрохимическим градиентом ионов Na, К и Са. Ионы Na выбрасываются из клетки, а ионы К накапливаются там, при этом создается трансмембранный потенциал клетки величиной 90–120 мВ. Ионы Са способны как выбрасываться из клеток, так и аккумулироваться во внутриклеточных депо, благодаря чему концентрация ионизированного Са2+ в «покоящейся» клетке составляет ~10-7 М.

Натрий и калий.

Причина, по которой живые системы «выбрали» одновалентные ионы для создания ионной асимметрии, проста: это наиболее распространенные ионы в неживой природе. Кроме того, эти ионы отличаются важными особенностями. Оба указанных элемента имеют низкий потенциал ионизации внешнего электрона (так называемый первый потенциал ионизации), а образующийся ион обладает конфигурацией атома инертного газа, то есть является сферическим и слабо поляризуемым[A19].

 

Таблица 9. Содержание основных ионов в клетках и внеклеточной жидкости некоторых животных в сравнении с ионным составом морской воды (мМ)

 

Объект Натрий Калий Кальций Магний Хлор
Крыса          
мышцы  27 101 1,5 11,0 16
 плазма крови 145 6,2  3,1 1,6 116
Лягушка          
мышцы 24 85 2,5 11,3 10
плазма крови 104 2,5 8,5 1,2 74
Осьминог          
мышцы 81 101 3,7 12,7 93
жидкость тела 525 12,2 11,6 57,2 480
Морская вода 440 9,5 9,6 56,0 535

 

 Второй потенциал ионизации для этих элементов достаточно высок. По этой причине, трудно предположить существование других окисленных форм этих металлов; в действительности они неизвестны.

В биологических жидкостях натрий и калий представлены преимущественно в ионной форме. В водной фазе рассматриваемые вещества бурно ионизируются с восстановлением водорода воды, а образующиеся ионы легко гидратируются.

 Натрий и калий вместе с Н, Li, Rb, Cs, Fr входят в состав I группы элементов таблицы Менделеева. Все они (кроме газообразного водорода) – металлы и относятся к группе щелочных металлов.

Общим для них является наличие избыточного (сверх конфигурации инертных газов) S-электрона.

Несмотря на высокую подвижность Na+ и К+, они не распределены в живых системах равномерно. Напротив, как уже отмечалось, существует определенная избирательность в распределении этих ионов между клетками и внеклеточной средой.

Натрий в интерстициальной жидкости регулирует осмотический баланс организма и содержание воды в тканях. Ионы Na участвуют также в поддержании кислотно-щелочного равновесия в организме, а в возбудимых тканях (нервная и мышечная) – участвуют в формировании электрического потенциала[A20].

 

В последнее время установлены и другие важные для организма функции Na+, направленные на изменение упаковки нуклеиновых кислот и белков, поскольку связывание натрия ионными центрами макромолекул может стабилизировать их в определенных конформациях. Способность К+ стабилизировать структуру макромолекул резко отличается от таковой у Na+.

 

Таблица 10. Физико-химические свойства ионов натрия и калия

Ион Радиус, Å

Координационное

число

Равновесный

потенциал,

мВ

Предельная

температура

гидратации, ºС

Na

+

 0,98 6-8 +60 20

K+

 1,33 6 -94 70

 

Калий также необходим для растений и животных. Поскольку многие его функции аналогичны таковым у Na+, эти ионы до некоторой степени взаимозаменяемы. Однако в большинстве случаев действие К+ оказывается противоположным действию Na+. Так, при возбуждении Na+ обеспечивает фазу деполяризации клетки, а К+ восстанавливает исходный потенциал на мембране. Для ряда ферментов гликолиза К+ является активатором, в то время как Na+ ингибирует их. По-разному влияют эти ионы и на конформационное состояние макромолекул. В основе их действия, видимо, лежит множественное связывание с анионными центрами крупных молекул, так как оптимальные активирующие концентрации одновалентных катионов очень высоки, они составляют 50–100 мМ.

Кроме того, натрий и калий в ионизированном состоянии не отличаются друг от друга по заряду, размеру и числу создаваемых ими координационных связей, но существенно отличаются по величине предельной температуры, то есть той температуры, выше которой разрешена их гидратация (Тпред). Для натрия она составляет +20°С, а для калия +70°С. Таким образом, по крайней мере в диапазоне температур выше +20°С, в котором функционируют большинство живых организмов, натрий легко взаимодействует с молекулами воды, образуя гидратную оболочку, а калий[A21] отталкивает воду (табл. 10). Таким образом, ион калия по своим свойствам является более гидрофобным, чем ион натрия.

Поскольку гидратированный ион натрия близок по размерам к негидратированному иону калия, то ни по заряду, ни по размерам эти ионы не отличаются друг от друга, и наиболее существенным различием для их дискриминации является величина гидрофобности. Количественно эта величина может быть выражена энергией гидратации, которая при комнатной температуре составляет для натрия +1,03 кДж/моль, а для калия – -1,05 кДж/моль. Очевидно, биологические молекулы могут использовать именно этот пара-метр для отбора и распознавания ионов.

Липиды хорошо различают Na+ и К+, вероятно, именно благодаря различиям в их гидрофобности. Если приготовить везикулы из смеси природных липидов (такой упрощенный прообраз клеточных структур называют липосомами), оказывается, что скорость простой диффузии через их мембраны будет в 3–7 раз выше для калия, чем для натрия (в зависимости от состава липидов, ионной силы и других условий). Таким образом, «неживые» липосомы способны создавать градиент одновалентных ионов на своей мембране, похожий на тот, что создается живыми клетками.

Нуклеиновые кислоты, несущие информацию о синтезе белков и тем самым определяющие белковое «лицо» клетки, тоже реагируют на изменение ионного состава среды, в которой они функционируют. Так, ионы натрия влияют на упаковку и взаимодействие нуклеотидов в двойной спирали, а ионы калия регулируют прочность контактов между рибосомами и РНК, с участием которых происходит синтез полипептидной цепи.

Белковые молекулы также не являются исключением. Они способны различать натрий и калий в водных растворах. Интенсивность многих ферментативных процессов в клетке зависит от ионов натрия и калия: в большинстве случаев ион калия является активатором, а ион натрия – ингибитором клеточных реакций. Исключение составляют процессы синтеза липидов, активируемые натрием.

Магний и кальций. Ионы Mg и Са входят в состав II группы элементов таблицы Менделеева; эта группа открывается берилли[A22] ….

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: