Системы шифрования данных, передаваемых по сетям

Различают два основных способа шифрования: канальное шифрование и оконечное (абонентское) шифрование.

В случае канального шифрования защищается вся информация, передаваемая по каналу связи, включая служебную. Этот способ шифрования обладает следующим достоинством - встраивание процедур шифрования на канальный уровень позволяет использовать аппаратные средства, что способствует повышению производительности системы. Однако у данного подхода имеются и существенные недостатки:

-шифрование служебных данных осложняет механизм маршрутизации сетевых пакетов и требует расшифрования данных в устройствах промежуточной коммуникации (шлюзах, ретрансляторах и т.п.);

- шифрование служебной информации может привести к появлению статистических закономерностей в шифрованных данных, что влияет на надежность защиты и накладывает ограничения на использование криптографических алгоритмов.

Оконечное (абонентское) шифрование позволяет обеспечить конфиденциальность данных, передаваемых между двумя абонентами. В этом случае защищается только содержание сообщений, вся служебная информация остается открытой. Недостатком является возможность анализировать информацию о структуре обмена сообщениями, например об отправителе и получателе, о времени и условиях передачи данных, а также об объеме передаваемых данных.

Системы аутентификации электронных данных.

При обмене данными по сетям возникает проблема аутентификации автора документа и самого документа, т.е. установление подлинности автора и проверка отсутствия изменений в полученном документе. Для аутентификации данных применяют код аутентификации сообщения (имитовставку) или электронную подпись.

Имитовставка вырабатывается из открытых данных посредством специального преобразования шифрования с использованием секретного ключа и передается по каналу связи в конце зашифрованных данных. Имитовставка проверяется получателем, владеющим секретным ключом, путем повторения процедуры, выполненной ранее отправителем, над полученными открытыми данными.

Электронная цифровая подпись представляет собой относительно небольшое количество дополнительной аутентифицирующей информации, передаваемой вместе с подписываемым текстом. Отправитель формирует цифровую подпись, используя секретный ключ отправителя. Получатель проверяет подпись, используя открытый ключ отправителя.

Таким образом, для реализации имитовставки используются принципы симметричного шифрования, а для реализации электронной подписи - асимметричного. Подробнее эти две системы шифрования будем изучать позже.

Средства управления криптографическими ключами.

Безопасность любой криптосистемы определяется используемыми криптографическими ключами. В случае ненадежного управления ключами злоумышленник может завладеть ключевой информацией и получить полный доступ ко всей информации в системе или сети.

Различают следующие виды функций управления ключами: генерация, хранение, и распределение ключей.

Способы генерации ключей для симметричных и асимметричных криптосистем различны. Для генерации ключей симметричных криптосистем используются аппаратные и программные средства генерации случайных чисел. Генерация ключей для асимметричных криптосистем более сложна, так как ключи должны обладать определенными математическими свойствами. Подробнее на этом вопросе остановимся при изучении симметричных и асимметричных криптосистем.

Функция хранения предполагает организацию безопасного хранения, учета и удаления ключевой информации. Для обеспечения безопасного хранения ключей применяют их шифрование с помощью других ключей. Такой подход приводит к концепции иерархии ключей. В иерархию ключей обычно входит главный ключ (т.е. мастер-ключ), ключ шифрования ключей и ключ шифрования данных. Следует отметить, что генерация и хранение мастер-ключа является критическим вопросом криптозащиты.

Распределение - самый ответственный процесс в управлении ключами. Этот процесс должен гарантировать скрытность распределяемых ключей, а также быть оперативным и точным. Между пользователями сети ключи распределяют двумя способами:

- с помощью прямого обмена сеансовыми ключами;

- используя один или несколько центров распределения ключей.

Магистрально-модульный принцип построения компьютера

В основу архитектуры современных персональных компьютеров положен магистрально-модульный принцип. Модульный принцип позволяет потребителю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Модульная организация компьютера опирается на магистральный (шинный) принцип обмена информацией между устройствами.

Магистраль

Магистраль (системная шина) включает в себя три многоразрядные шины: шину данных, шину адреса и шину управления, которые представляют собой многопроводные линии (рис. 4.1). К магистрали подключаются процессор и оперативная память, а также периферийные устройства ввода, вывода и хранения информации, которые обмениваются информацией на машинном языке (последовательностями нулей и единиц в форме электрических импульсов).

Шина данных. По этой шине данные передаются между различными устройствами. Например, считанные из оперативной памяти данные могут быть переданы процессору для обработки, а затем полученные данные могут быть отправлены обратно в оперативную память для хранения. Таким образом, данные по шине данных могут передаваться от устройства к устройству в любом направлении.

Разрядность шины данных определяется разрядностью процессора, то есть количеством двоичных разрядов, которые могут обрабатываться или передаваться процессором одновременно. Разрядность процессоров постоянно увеличивается по мере развития компьютерной техники.

Рис. 4.1. Магистрально-модульное устройство компьютера

Шина адреса. Выбор устройства или ячейки памяти, куда пересылаются или откуда считываются данные по шине данных, производит процессор. Каждое устройство или ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине, причем сигналы по ней передаются в одном направлении - от процессора к оперативной памяти и устройствам (однонаправленная шина).

Разрядность шины адреса определяет объем адресуемой памяти (адресное пространство), то есть количество однобайтовых ячеек оперативной памяти, которые могут иметь уникальные адреса. Количество адресуемых ячеек памяти можно рассчитать по формуле:

N = 2I, где I - разрядность шины адреса.

Разрядность шины адреса постоянно увеличивалась и в современных персональных компьютерах составляет 36 бит. Таким образом, максимально возможное количество адресуемых ячеек памяти равно:

N = 236 = 68 719 476 736.

Шина управления. По шине управления передаются сигналы, определяющие характер обмена информацией по магистрали. Сигналы управления показывают, какую операцию - считывание или запись информации из памяти - нужно производить, синхронизируют обмен информацией между устройствами и так далее.

 

 

13) Память персональногокомпьютера

Память компьютера удобно представлять себе в виде последовательности ячеек. Каждая ячейка содержит информацию в количестве один байт (восемь битов). Любая информация хранится в памяти компьютера в виде последовательности байтов. Байты памяти пронумерованы друг за другом, причем номер первого от начала памяти байта равен нулю. Каждая конкретная информация, хранимая в памяти, может занимать один или несколько байтов. Количество байтов, которое занимает та или иная информация в памяти, есть размер этой информации в байтах.

Память состоит из ячеек. Ячейка содержит один байт информации. Размер информации - это количество байтов, занимаемых этой информацией.

Адрес информации - это номер первого из занимаемых этой информацией байтов.

Объем памяти компьютера - это количество содержащихся в ней байтов.

Чем больше объем памяти, тем больше данных и программ она может вместить, тем, соответственно, больше задач можно решить с помощью компьютера.

Обмен данными между центральным процессором и памятью осуществляется с помощью специального устройства, называемого шиной.

Упрощенно шину можно представить себе как набор параллельных проводов, каждый из которых передает один бит информации: 1 или 0. Количество проводов в шине - это ширина шины. Именно ширина шины и есть то количество битов (разрядов), которое определяет количество одновременно передаваемой информации. Чем шире шина (больше ее разрядность), тем больше данных можно передать одновременно, тем быстрее работает компьютер.

Для передачи адресов используется шина адреса, для передачи данных используется шина данных. Естественно, что процесс усовершенствования современных компьютеров включает в себя и переход к более широким шинам.

Таким образом, ширина шины адреса определяет объем доступной памяти компьютера.

Современные IBM-совместимые компьютеры имеют ширину шины адреса 20, 24 или 32 разряда. Компьютеры с 20 - разрядной шиной адреса могут обращаться (адресовать) до 1 Мбайта (= 2²´ байтов) памяти. Компьютеры с 24 - разрядной шиной адреса могут адресоваться уже до 16 Мбайтов (= 2²´ байтов) памяти, а компьютеры с 32-и разрядной шиной адреса - именно они составляют большинство используемых в нашей стране компьютеров - могут адресовать уже до 4 ГбайтОВ (= 2³² байтов) памяти.

Весь объем памяти состоит из трех частей:

· основная (или стандартная) память занимает первые (или, как говорят, нижние) 640 Кбайтов памяти;

· верхняя память занимает 384 Кбайтов памяти: от 640 Кбайтов до 1Мбайта;

· расширенная - это память за пределами 1Мбайта. Первые 64 Кбайта называются областью высокой памяти.

В процессе работы компьютера каждая из этих частей используется для хранения определенных видов программ и данных.

Виды памяти

Вся память компьютера делится на два вида. Первый вид памяти называется оперативной памятью или оперативнвм запоминающим устройством (ОЗУ). В английском языке для такого вида памяти используется сокращение RAM - память с произвольныь доступом. Этот вид памяти имеет такое название потому, что позволяет не только считывать информацию из памяти по указанным адресам, но и записывать информацию в память (т. е. менять содержание памяти). Именно с этой памятью центральный процессор постоянно обменивается информацией при решении компьютером каждой конкретной задачи. Содержимое этого вида памяти не сохраняется при выключении компьютера.

Оперативная память предназначена для чтения и записи информации

Второй вид памяти называется постоянным запоминающим устройством (ПЗУ) и характеризуется тем, что позволяет только считывать информацию. Именно поэтому такой вид памяти получил в английском языке название ROM - память только для чтения. Запист в этот вид памяти невозможна. Благодаря этому информация, находящаяся в ROM -памяти, защищена от нарушений и изменений.

Содержимое этого вида памяти сохраняется при выключении компьютера.

Постоянная память предназначена только для чтения информации.

В ПЗУ находятся важные для правильной работы компьютера данные и программы, часть из которых компьютер использует для своей работы сразу после включения.

    ПЗУ расположена в верхней памяти, т. е. составляет лишь небольшую часть общего объема памяти компьютера. Большую часть всего объема памяти компьютера занимает ОЗУ.

Кроме перечисленных есть еще один вид памяти, служащий для ускорения работы компьютера. Она называется кэш-памятью (по англ. - тайник) и представляет собой небольшую по объему отдельную память, в которой хранится наиболее часто используемая информация. Время доступа к информации, хранящейся в кэш-памяти, меньше, чем время доступа к этой же информации, хранящейся в других видах памяти компьютера. Механизм кэширования ускоряет работу компьютера, т. е. быстро действующим устройством не приходится ожидать поступления информации от медленно действующих по сравнению с ними видов памяти - информация извлекается из кэш-памяти. Таким образом, кэш-память используется для согласования времени взаимодействия быстрых и медленных устройств.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: