Получение дискретной математической модели объекта

 

Термин “дискретный” еще не сложился. Каждая система управления, в которой присутствует хотя бы один элемент, который не подчиняется непрерывному характеру изменения сигнала, может быть отнесен к классу дискретных систем. Для этих систем характерным является исчезновения сигнала информации хотя бы на небольшом интервале времени. Если эти интервалы устремить к нулю, то можно рассматривать систему как непрерывную. Дискретные системы более общие. В производстве часто технологические процессы непрерывные [2].

Пусть имеется на входе в дискретный элемент какой-то непрерывный сигнал. Введем период квантования. Заменяем реальное время на кванты т=к*Т к=0,1,…, . Если Т  0 тогда имеем непрерывную модель. В этом случае можно зафиксировать амплитуды. Кроме квантования по времени можно квантовать и по вертикали (амплитуде). При таком виде квантования цифры заносятся в виде “0” и “1”. В случае объединения этих квантований они называются дискретными.

Выделим случай, когда входной сигнал x(t) является элементарной функцией 1(t). Реакцию системы на воздействие 1(t) можно компактно:

 

,                                       (5.1)

 

где W(D) называется операторной передаточной функцией или оператором. Формально W(D) можно рассматривать как дробно-рациональную функцию от оператора:

 

.                                                         (5.2)


 

Воспользуемся преобразованием Лапласа, основываясь на утверждении

 

,                         (5.3)

 

если f(0) = 0. Аналогично можно записать:

 

 (5.4)

 (5.5)

 

для любого операторного многочлена степени k, если f(t) и ее производные при t < 0, равны нулю.

Применяя правило (5.5), получим

 

,                                 (5.6)

 

где

При этом предполагается, что равны нулю y(0), x(0) и начальные значения производных y(t), x(t) вплоть до (n – 1)-й и (m – 1)-й соответственно. Теперь a(p), b(p) - обычные функции комплексной переменной p. Поэтому операция деления на a(p) имеет обычный смысл

 

.                                          (5.7)

 

Учитывая определения (5.7), приходим к основной формуле

 

.                                                   (5.8)


 

Для осуществления z-преобразования и выбора периода квантования воспользуемся пакетом Matlab:

clc, clear

%Передаточная функция по 1-ому динамическому каналу

W1=tf([1.25],[5 1]);

%Передаточная функция по 2-ому динамическому каналу

W2=tf([0.924],[5 1])

%Формирование передаточной объекта

Wo=series(W1,W2)

T=0.5;

WWo=c2d(Wo,T,'zoh')

figure(1);

step(Wo,WWo)

grid on

 

Определяем погрешность квантования:

 

 

Погрешность квантования не превышает заданную (7%), значит выполняем переход от непрерывной модели к дискретной с периодом квантования 0.5.

Передаточная функция в z-области:

 


 

Программа перехода от непрерывной модели(модели в пространстве состояния) к дискретной в пакете MATLAB

clc, clear

% задаем матрицы параметров

A=[-0.2 0;0 -0.2]

B=[0;0.1848]

F=[0.25;0]

C=[1 1]

D=[0]

BB=[B F]

% переход в область переменных состояний

sistema1=ss(A,BB,C,D)

% переход в дискретную область

sistema2=c2d(sistema1,0.5)

Wz=tf(sistema2)

Модель в пространстве состояний.

 a = x1 x2 x1 0.9048 0 x2 0 0.9048 b = u1 u2 x1 0 0.119 x2 0.08793 0

c = x1 x2 y1 1 1 d = u1 u2 y1 0

Передаточная функция в z-области по каналам.

1.По первому динамическому каналу.

 

 


 






Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: