Современные технологии формирования спонтанно упорядоченных наноструктур

В последнее время бурно развиваются технологии создания композитных материалов, в частности, нанотехнология. Одним из основных достоинств нанотехнологии является возможность использования принципиально новых подходов в создании искусственных сред. Среди материалов, содержащих наночастицы, особое место занимают образцы, содержащие наноразмерные частицы металла и полупроводников. В периодических публикациях [2-8] их называют “квантовыми точками”, подчёркивая тем самым, что в этих образованиях, в отличие от массивных материалов, отсутствует широкая зонная структура и имеется структура минизон или набор дискретных электронных уровней. Одна из областей применения материалов содержащих квантовые точки это разработка высокоселективных и чувствительных оптических сенсоров, смесителей электромагнитных колебаний в широком спектральном диапазоне, а также одноэлектронных транзисторов для квантовых компьютеров [9]. Исследовались наноразмерные плёнки, слоистые плёночные структуры, массивные материалы с наноразмерными кристаллитами, а также отдельные наночастицы и различные матрицы, содержащие такие наночастицы. Последние объекты представляют особый интерес, т.к. позволяют непосредственно исследовать особенности наноразмерного состояния. В качестве матриц используется стекло, окислы (напр., SiO2), металлы (например, Hg), полимерные пленки [10], коллоидные частицы [11]. Необходимо отметить, что несмотря на всё возрастающее число экспериментальных и теоретических работ по «квантовым точкам», механизм электронных взаимодействий в наночастицах и природа их спектральных свойств всё еще далеки от полного понимания. Попытка сочетать свойства полимеров и неорганических материалов ведутся на протяжении последних нескольких десятков лет и это является одним их основных направлений науки о материалах, направленных на создание гибких электронных устройств из органических материалов. Таким путем предполагается решить ряд фундаментальных задач органической электроники, связанных с получением новых материалов на основе наночастиц металла и полупроводниковых оксидов, изолированных друг от друга в полимерной диэлектрической матрице. Изучаются оптические спектральные (рассеяние, отражение и поглощение света) и люминесцентные свойства полученных материалов вблизи критической концентрации наночастиц в диэлектрической матрице.

В последнее время в этом направлении наблюдается значительный прогресс. Получены материалы, содержащие наночастицы различного состава, обладающие рядом уникальных электрических, оптических и магнитных свойств [10, 12]. Среди методов получения наночастиц можно выделить метод электроискровой эрозии, распыление, осаждение из газовой фазы, механическое размалывание, химические методы. При получении наночастиц без матрицы (в виде порошка) основной проблемой является их агломерация, приводящая к образованию крупных агрегатов из частиц и к утрате присущих наноразмерному состоянию уникальных свойств. С практической точки зрения предпочтительнее исследовать наночастицы в матрице, а в качестве матрицы использовать полимеры, в которых имеются естественные пустоты наноразмера (нанореакторы), пригодные для формирования наночастиц. Использование полимерных матриц также предпочтительнее потому, что уровень технологии получения полимеров достаточно высок. Предложенный метод [13] включает введение в раствор/расплав полимера раствора металлсодержащих соединений (МСС), высокоскоростное терморазложение которых in situ приводит к образованию металлсодержащих наночастиц. Этот метод использован для получения наночастиц металлов Fe, Cu, Zn и их оксидов.

Важное место в нанотехнологии занимают физические, в частности, плазменные методы получения нанокомпозитных материалов. В работе [14], например, исследована тонкая структура углеводородных пленок, полученных в плазме микроволнового газового разряда низкого давления. Показано, что размеры алмазоподобных наночастиц в углеводородной матрице могут составлять от 10 до 100 нм.

В течение долгого времени во всем мире предпринимались попытки изготовления квантовых точек и приборов на их основе "традиционными способами", например путем селективного травления структур с квантовыми ямами, роста на профилированных подложках, на сколах, или конденсации в стеклянных матрицах. При этом приборно-ориентированные структуры так и не были созданы, а принципиальная возможность реализации атомоподобного спектра плотности состояний в макроскопической полупроводниковой структуре не была продемонстрирована в явном виде. Качественный прорыв в данной области связан с использованием эффектов самоорганизации полупроводниковых наноструктур в гетероэпитаксиальных полупроводнико-вых системах. "Самоорганизация" наноструктур понимается в широком смысле, как самопроизвольное возникновение макроскопического порядка в первоначально однородной системе.

Одним из эффективных способов изготовления размерно-ограниченных структур является молекулярно- пучковая эпитаксия (МПЭ) [15]. Ее отличие от ранее существовавших различных методов вакуумного напыления заключается в высоком уровне контроля условий конденсации атомов или молекул и возможности управления этим процессом с высокой точностью. Успехи технологии были связаны в основном с соединениями А3В5. При последовательном выращивании слоев GaAs и Ga1-xAlхAs, имеющих практически одинаковые параметры кристаллической решетки, можно вырастить совершенные структуры, содержащие двумерные электроны.

В последние годы было обнаружено, что при пониженных температурах роста при многослойном росте полупроводника с параметрами кристаллической решетки, отличающимися от параметров решетки подложки, можно получать на поверхности роста практически одинаковые по размеру островки (квантовые точки). Такой процесс получил название самоорганизации квантовых точек в процессе роста.

Другим способом получения гетероструктур с самоорганизованными КТ является метод газофазной эпитаксии. В этом методе осаждение структуры происходит в химическом реакторе путем термического разложения металлоорганических соединений Ga, In и арсина AsH3 на поверхности подложки, нагретой до температуры 500- 650С. Процесс ведется в потоке водорода в качестве газа-носителя соединений. Наличие плотной, горячей и химически активной атмосферы в реакторе практически исключает возможность прямого контроля за процессом осаждения и формированием структуры, например, с использованием дифракции электронов, как это осуществляется в процессе МПЭ. Это является существенным недостатком метода. Однако его относительная простота и экономичность, особенно важные при массовом производстве структур, способствуют развитию и этого метода.

Способ получения квантовых точек, характеризуемый тем, что получаются нанокристаллы без внутренних упругих напряжений, основан на методах коллоидной химии. Он позволяет получать нанокристаллы элементов II—IV (например, CdS) или III—V (например, InP, GaP, GaInP2, GaAs, InAs) групп сферической формы размером от 1 до 5 нм в органических растворителях, полимеризующихся при комнатной или более низкой температуре. Отличительными особенностями этого метода являются низкая температура (около 200°С) синтеза коллоидных частиц, возможность широкого изменения концентрации полупроводниковых частиц, небольшая концентрация поверхностных дефектов. Раствор химических реагентов, содержащих соединения элементов II и IV групп, вводят в растворитель, содержащий молекулы, взаимодействующие с поверхностью возникающих наночастиц. Это ограничивает рост частиц. Более крупные частицы можно осадить и получить раствор практически одинаковых по размеру частиц. В настоящее время удается отделить частицы с диаметрами, различающимися только на несколько процентов.

Синтез таким способом веществ III—V групп более трудоемок. Самые хорошие результаты получены в настоящее время при синтезе InP. Берется In(C2O4)3 и InF3 или InCl3. Эти вещества взаимодействуют со сложными соединениями, содержащими фосфор. Реакция идет несколько дней при температуре 270—290°С. От продолжительности реакции зависит размер получаемых частиц. В этом способе частицы покрыты сверху слоем молекул из раствора, которые могут быть замещены на другие, например полимерные. Полученные частицы можно изучать в растворе, в виде порошка или помещать в прозрачный полимер или органическое стекло.

Существует еще довольно распространенный способ приготовления неорганического стекла, окрашенного нанокристаллами соединений II—VI (CdS) и I—VII (CuCl, CuBr, CuI). Рост полупроводниковых нанокристаллов происходит при распаде пересыщенного раствора ионов в стекле. При этом способе получаются стабильные твердотельные стекла с вкрапленными нанокристаллами. Рост кристаллов в стеклянной матрице происходит при температуре 550— 700°С. Эта температура обычно превышает температуру плавления объемных полупроводниковых кристаллов, составляющую 400—500°С. С уменьшением размера нанокристалла до 1—2 нм температура плавления понижается до 200—250°С. К недостаткам такого роста относятся широкий разброс размеров частиц, невозможность воздействовать на параметры границы раздела стекло -нанокристалл.

При рассмотрении физических механизмов спонтанного возникновения упорядоченных наноструктур принято различать две принципиальные возможности. Во-первых, упорядоченные наноструктуры могут возникать в замкнутых системах, например, при отжиге образцов или при длительном прерывании роста. Такие структуры являются равновесными, и для их описания используется термодинамический подход. Во-вторых, упорядоченные структуры могут возникать в открытых системах в процессе роста кристалла. Эти структуры не являются равновесными, и для их описания применяется кинетическое рассмотрение. Использование термина "самоорганизация" наноструктур охватывает как равновесные явления, так и неравновесные процессы, а также их комбинацию. Этот подход дает возможность анализировать с единых позиций различные механизмы спонтанного возникновения наноструктур, при котором, как правило, равновесие успевает установиться только частично (например, равновесие успевает установиться на поверхности и не успевает в объеме).

Анализ современного состояния исследований в области технологий формирования спонтанно упорядоченных наноструктур позволяет выделить четыре большие класса, приведенные на рис. 1 [16]. Это:

— структуры с периодической модуляцией состава в эпитаксиальных пленках твердых растворов полупроводников;

— периодически фасетированные поверхности;

— периодические структуры плоских доменов (например, островков монослойной высоты);

— упорядоченные массивы трехмерных когерентно напряженных островков в гетероэпитаксиальных рассогласованных системах.

Хотя причина неустойчивости однородного состояния различна для каждого класса наноструктур, причина упорядочения в неоднородном состоянии общая для всех классов наноструктур. Во всех этих системах соседние домены различаются постоянной кристаллической решетки и (или) структурой поверхности, и, следовательно, доменные границы являются источниками дальнодействующих полей упругих напряжений. Это позволяет использовать единый подход ко всем четырем классам упорядоченных наноструктур и рассматривать их как равновесные структуры упругих доменов, соответствующие минимуму свободной энергии. До недавнего времени доменные структуры, приведенные на рис. 1, а-с, традиционно рассматривались вне связи с полупроводниковыми наноструктурами. Единый подход позволяет проследить основные закономерности образования упорядоченных структур на более простых примерах (рис. 1, а—с)и затем, с одной стороны, применить их к описанию массивов трехмерных когерентно напряженных островков (рис. 1, d), и с другой стороны, использовать при разработке новой технологии получения полупроводниковых наноструктур.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: