Получают лактозу из сыворотки молока

Применение. Применяют для приготовления питательных сред, например при производстве пенициллина. Используют в качестве вспомогательного вещества (наполнителя) в фармацевтической промышленности.

Из лактозы получают лактулозу - ценный препарат для лечения кишечных расстройств, например, запора.

44. Сахароза C12H22O11, или свекловичный сахар, тростниковый сахар, в быту просто сахар — дисахарид, состоящий из двух моносахаридов — α-глюкозы и β-фруктозы.

Сахароза является весьма распространённым в природе дисахаридом, она встречается во многих фруктах, плодах и ягодах. Особенно велико содержание сахарозы в сахарной свёкле и сахарном тростнике, которые и используются для промышленного производства пищевого сахара.

Сахароза имеет высокую растворимость. В химическом отношении фруктоза довольно инертна,т.е. при перемещении из одного места в другое почти не вовлекается в метаболизм. Иногда сахароза откладывается в качестве запасного питательного вещества.

Сахароза, попадая в кишечник, быстро гидролизуется альфа-глюкозидазой тонкой кишки на глюкозу и фруктозу, которые затем всасываются в кровь. Ингибиторы альфа-глюкозидазы, такие, как акарбоза, тормозят расщепление и всасывание сахарозы, а также и других углеводов, гидролизуемых альфа-глюкозидазой, в частности, крахмала. Это используется в лечении сахарного диабета 2-го типа. Синонимы: альфа-D-глюкопиранозил-бета-D-фруктофуранозид, свекловичный сахар, тростниковый сахар.

Химические и физические свойства. Молекулярная масса 342,3 а.е.м. Брутто-формула (система Хилла): C12H22O11. Вкус сладковатый. Растворимость (грамм на 100 грамм): в воде 179 (0°C) и 487 (100°C), в этаноле 0,9 (20°C). Малорастворима в метаноле. Не растворима в диэтиловом эфире. Плотность 1,5879 г/см3 (15°C). Удельное вращение для D-линии натрия: 66,53 (вода; 35 г/100г; 20°C). При охлаждении жидким воздухом, после освещения ярким светом кристаллы сахарозы фосфоресцируют. Не проявляет восстанавливающих свойств - не реагирует с реактивом Толленса и реактивом Фелинга. Наличие гидроксильных групп в молекуле сахарозы легко подтверждается реакцией с гидроксидами металлов. Если раствор сахарозы прилить к гидроксиду меди (II), образуется ярко-синий раствор сахарата меди. Альдегидной группы в сахарозе нет: при нагревании с аммиачным раствором оксида серебра (I) она не дает «серебряного зеркала», при нагревании с гидроксидом меди (II) не образует красного оксида меди (I). Из числа изомеров сахарозы, имеющих молекулярную формулу С12Н22О11, можно выделить мальтозу и лактозу.

Реакция сахарозы с водой. Если прокипятить раствор сахарозы с несколькими каплями соляной или серной кислоты и нейтрализовать кислоту щелочью, а после этого нагреть раствор, то появляются молекулы с альдегидными группами, которые и восстанавливают гидроксид меди (II) до оксида меди (I). Эта реакция показывает, что сахароза при каталитическом действии кислоты подвергается гидролизу, в результате чего образуются глюкоза и фруктоза: С12Н22О11 + Н2О → С6Н12O6 + С6Н12O6

Природные и антропогенные источники. Содержится в сахарном тростнике, сахарной свекле (до 28% сухого вещества), соках растений и плодах (например, берёзы, клёна, дыни и моркови). Источник получения сахарозы - из свеклы или из тростника определяют по соотношению содержания стабильных изотопов углерода 12C и 13C. Сахарная свекла имеет C3-механизм усвоения углекислого газа (через фосфоглицериновую кислоту) и предпочтительно поглощает изотоп 12C; сахарный тростник имеет C4-механизм поглощения углекислого газа (через щавелевоуксусную кислоту) и предпочтительно поглощает изотоп 13C.

45. Целлобиоза — углевод из группы дисахаридов, состоящий из двух глюкозных остатков, соединённых (β-глюкозидной связью; основная структурная единица целлюлозы.

Белое кристаллическое вещество, хорошо растворимое в воде. Для целлобиозы характерны реакции с участием альдегидной (полуацетальной) группы и гидроксильных групп. При кислотном гидролизе или под действием фермента β-глюкозидазы целлобиоза расщепляется с образованием 2 молекул глюкозы.

Получают целлобиозу при частичном гидролизе целлюлозы. В свободном виде целлобиоза содержится в соке некоторых деревьев.

 

 

46. Полисахари́ды — общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров — моносахаридов.

Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Они являются одним из основных источников энергии, образующейся в результате обмена веществ организма. Они принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

Была установлена многообразная биологическая активность полисахаридов растительного происхождения: антибиотическая, противовирусная, противоопухолевая, антидотная[источник не указан 236 дней]. Полисахариды растительного происхождения выполняют большую роль в уменьшении липемии и атероматоза сосудов благодаря способности давать комплексы с белками и липо-протеидами плазмы крови.

К полисахаридам относятся, в частности:

декстрин — полисахарид, продукт гидролиза крахмала;

крахмал — основной полисахарид, откладываемый, как энергетический запас у растительных организмов;

гликоген — полисахарид, откладываемый, как энергетический запас в клетках животных организмов, но встречается в малых количествах и в тканях растений;

целлюлоза — основной структурный полисахарид клеточных стенок растений;

галактоманнаны — запасные полисахариды некоторых растений семейства бобовых, такие как гуаран и камедь рожкового дерева;

глюкоманнан — полисахарид, получаемый из клубней конняку, состоит из чередующихся звеньев глюкозы и маннозы, растворимое пищевое волокно, уменьшающее аппетит;

амилоид — применяется при производстве пергаментной бумаги.

Целлюло́за ( от лат. cellula — клетка, то же самое, что клетчатка) — [С6Н7О2(OH)3]n, полисахарид; главная составная часть клеточных оболочек всех высших растений.

Целлюлоза состоит из остатков молекул глюкозы, которая и образуется при кислотном гидролизе целлюлозы:

(C6H10O5)n + nH2O -> nC6H12O6

Целлюлоза представляет собой длинные нити, содержащие 300–2500 глюкозных остатков, без боковых ответвлений. Эти нити соединены между собой множеством водородных связей, что придает целлюлозе большую механическую прочность. У млекопитающих (как и большинства других животных) нет ферментов, способных расщеплять целлюлозу. Однако многие травоядные животные (например, жвачные) имеют в пищеварительном тракте бактерий-симбионтов, которые расщепляют и помогают хозяевам усваивать этот полисахарид.

Промышленным методом целлюлозу получают методом варки на целлюлозных заводах входящих в промышленные комплексы (комбинаты). По типу применяемых реагентов различают следующие способы варки целлюлозы:

Кислые:

Сульфитный. Варочный раствор содержит сернистую кислоту и ее соль, например гидросульфит натрия. Этот метод применяется для получения целлюлозы из малосмолистых пород древесины: ели, пихты.

Щелочные:

Натронный. Используется раствор гидроксида натрия. Натронным способом можно получать целлюлозу из лиственных пород древесины и однолетних растений.

Сульфатный. Наиболее распространенный метод на сегодняшний день. В качестве реагента используют раствор, содержащий гидроксид и сульфид натрия, и называемый белым щелоком. Свое название метод получил от сульфата натрия, из которого на целлюлозных комбинатах получают сульфид для белого щелока. Метод пригоден для получения целлюлозы из любого вида растительного сырья. Недостатком его является выделения большого количества дурно пахнущих сернистых соединений: метилмеркаптана, диметилсульфида и др. в результате побочных реакций.

Получаемая после варки техническая целлюлоза содержит различные примеси: лигнин, гемицеллюлозы. Если целлюлоза предназначена для химической переработки (например, для получения искусственных волокон), то она подвергается облагораживанию - обработке холодным или горячим раствором щелочи для удаления гемицеллюлоз.

Для удаления остаточного лигнина и придания целлюлозе белизны проводится ее отбелка. Традиционная хлорная отбелка включает в себя две ступени:

обработка хлором — для разрушения макромолекул лигнина;

обработка щелочью — для экстракции образовавшихся продуктов разрушения лигнина.

47. Крахма́л — полисахариды амилозы и амилопектина, мономером которых является альфа-глюкоза. Крахмал, синтезируемый разными растениями под действием света (фотосинтез) имеет несколько различных составов и структуру зёрен.

Биологические свойства. Крахмал, являясь одним из продуктов фотосинтеза, широко распространен в природе. Для растений он является запасом питательных веществ и содержится в основном в плодах, семенах и клубнях. Наиболее богато крахмалом зерно злаковых растений: риса (до 86 %), пшеницы (до 75 %), кукурузы (до 72 %), а также клубни картофеля (до 24 %).

Для организма человека крахмал наряду с сахарозой служит основным поставщиком углеводов — одного из важнейших компонентов пищи. Под действием ферментов крахмал гидролизуется до глюкозы, которая окисляется в клетках до углекислого газа и воды с выделением энергии, необходимой для функционирования живого организма.

Биосинтез. Часть глюкозы, образующейся в зелёных растениях при фотосинтезе, превращается в крахмал:

6CO2 + 6H2O → C6H12O6 + 6O2

nC6H12O6(глюкоза) → (C6H10O5)n + nH2O

В общем виде это можно записать как 6nCO2 + 5nH2O → (C6H10O5)n 6nO2.

Крахмал в качестве резервного питания накапливается в клубнях, плодах, семенах растений. Так в клубнях картофеля содержится до 24 % крахмала, в зёрнах пшеницы — до 64 %, риса — 75 %, кукурузы — 70 %.

Гликоген — полисахарид, образованный остатками глюкозы; основной запасной углевод человека и животных. Гликоген (также иногда называемый животным крахмалом, несмотря на неточность этого термина) является основной формой хранения глюкозы в животных клетках. Откладывается в виде гранул в цитоплазме во многих типах клеток (главным образом печени и мышц). Гликоген образует энергетический резерв, который может быть быстро мобилизован при необходимости восполнить внезапный недостаток глюкозы. Гликогеновый запас, однако, не столь емок в калориях на грамм, как запас триглицеридов (жиров). Только гликоген, запасенный в клетках печени (гепатоциты) может быть переработан в глюкозу для питания всего организма, при этом гепатоциты способны накапливать до 8 процентов своего веса в виде гликогена, что является максимальной концентрацией среди всех видов клеток. Общая масса гликогена в печени может достигать 100—120 граммов у взрослых. В мышцах гликоген перерабатывается в глюкозу исключительно для локального потребления и накапливается в гораздо меньших концентрациях (не более 1 % от общей массы мышц), в то же время его общий мышечный запас может превышать запас, накопленный в гепатоцитах. Небольшое количество гликогена обнаружено в почках, и еще меньшее — в определенных видах клеток мозга (глиальных) и белых кровяных клетках.

 

 

48. Хитин(C8H13O5N) (фр. chitine, от греч. chiton: хитон — одежда, кожа, оболочка) — природное соединение из группы азотсодержащих полисахаридов. Химическое название: поли-N-ацетил-D-глюкозо-2-амин, полимер из остатков N-ацетилглюкозамина, связанных между собой b-(1,4)-гликозидными связями. Основной компонент экзоскелета (кутикулы) членистоногих и ряда др. беспозвоночных, входит в состав клеточной стенки грибов и бактерий.

Распространение в природе. Хитин - один из наиболее распространённых в природе полисахаридов – каждый год на Земле в живых организмах образуется и разлагается около 10 гигатонн хитина.

Выполняет защитную и опорную функции, обеспечивая жёсткость клеток — содержится в клеточных стенках грибов.

Главный компонент экзоскелета членистоногих.

Также хитин образуется в организмах многих других животных – разнообразных червей, кишечнополостных и т. д.

Во всех организмах, вырабатывающих и использующих хитин, он находится не в чистом виде, а в комплексе с другми полисахаридами, и очень часто ассоциирован с белками. Несмотря на то, что хитин является веществом, очень близким по строению, физико-химическим свойствам и биологической роли к целлюлозе, в организмах, образующих целлюлозу (растения, некоторые бактерии) хитин найти не удалось.

Химия хитина. В естественном виде хитины разных организмов несколько отличаются друг от друга по составу и свойствам. Молекулярная масса хитина достигает 260 000.

Хитин не растворим в воде, устойчив к разбавленным кислотам, щелочам, спирту и др. органическим растворителям. Растворим в концентрированных растворах некоторых солей (хлорид цинка, тиоцианат лития, соли кальция).

При нагревании с концентрированными растворами минеральных кислот разрушается (гидролизуется), отщепляя ацетильные группы.

Практическое использование. Одно из производных хитина, получаемое из него промышленным способом - хитозан. Сырьем для его получения служат панцири ракообразных (криль, камчатский краб), а также продукты микробиологического синтеза.

49. Ароматические углеводороды, органические соединения, состоящие из углерода и водорода и содержащие бензольные ядра. Простейшие и наиболее важные представители А. у. — бензол (I) и его гомологи: метилбензол, или толуол (II), диметилбензол, или ксилол, и т. д. К А. у. относятся также производные бензола с ненасыщенными боковыми цепями, например стирол (III). Известно много А. у. с несколькими бензольными ядрами в молекуле, например дифенилметан (IV), дифенил C6H5—C6H5, в котором оба бензольных ядра непосредственно связаны между собой; в нафталине (V) оба цикла имеют 2 общих атома углерода; такие углеводороды называются А. у. с конденсированными ядрами.

Бензо́л C6H6, PhH) — органическое химическое соединение, бесцветная жидкость с приятным сладковатым запахом. Ароматический углеводород. Бензол входит в состав бензина, широко применяется в промышленности, является исходным сырьём для производства лекарств, различных пластмасс, синтетической резины, красителей. Хотя бензол входит в состав сырой нефти, в промышленных масштабах он синтезируется из других её компонентов. Токсичен, канцероген.

Гомологи - Соединения, принадлежащие к одному классу, но отличающиеся друг от друга по составу на целое число групп СН2. Совокупность всех гомологов образует гомологический ряд.

Физические свойства. Бесцветная жидкость со своеобразным резким запахом. Температура плавления = 5,5 °C, температура кипения = 80,1 °C, плотность = 0,879 г/см³, молекулярная масса = 78,11 г/моль. Подобно всем углеводородам бензол горит и образует много копоти. С воздухом образует взрывоопасные смеси, хорошо смешивается с эфирами, бензином и другими органическими растворителями, с водой образует азеотропную смесь с температурой кипения 69,25 °C. Растворимость в воде 1,79 г/л (при 25 °C).

Структура. Бензол по составу относится к ненасыщенным углеводородам (гомологический ряд CnH2n-6), но в отличие от углеводородов ряда этилена C2H4 проявляет свойства, присущие насыщенным углеводородам при жёстких условиях, а вот к реакциям замещения бензол более склонен. Такое «поведение» бензола объясняется его особым строением: наличием в структуре сопряжённого 6π-электронного облака. Современное представление об электронной природе связей в бензоле основывается на гипотезе Лайнуса Полинга, который предложил изображать молекулу бензола в виде шестиугольника с вписанной окружностью, подчёркивая тем самым отсутствие фиксированных двойных связей и наличие единого электронного облака, охватывающего все шесть атомов углерода цикла.

50. Ароматические соединения (арены) — циклические органические соединения, которые имеют в своём составе ароматическую систему связей. Они могут иметь насыщенные или ненасыщенные боковые цепи.

К наиболее важным ароматическим углеводородам относятся бензол С6Н6 и его гомологи: толуол С6Н5СНз, ксилол С6Н4(СНз)2 и др.; нафталин C10H8, антрацен С14Н10 и их производные. Отличительные химические свойства — повышенная устойчивость ароматического ядра и склонность к реакциям замещения. Основным источником получения ароматических углеводородов служат каменноугольная смола, нефть и нефтепродукты. Большое значение имеют синтетические методы получения. Ароматические углеводороды — исходные продукты для получения кетонов, альдегидов и кислот ароматического ряда, а также многих других веществ. Существуют также гетероциклические арены, среди которых чаще всего встречаются в чистом виде и в виде соединений — пиридин, пиррол, фуран и тиофен, индол, пурин, хинолин.

Также ароматичностью обладает боразол («неорганический бензол»), но его свойства заметно отличаются от свойств органических аренов.

Реакции электрофильного замещения' (англ. substitution electrophilic reaction) — реакции замещения, в которых атаку осуществляет электрофил - частица, заряженная положительно или имеющая дефицит электронов. При образовании новой связи уходящая частица - электрофаг отщепляется без своей электронной пары. Самой популярной уходящей группой является протон H+.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: