Транспирация воды листьями

Со всякой водной поверхности происходит испарение — переход воды из жидкого состояния в парообразное. Это физическое явление. Листья растения пропитаны водой. С их поверхности (особенно через устьица) вода постоянно испаряется, но это будет явление биологическое, связанное с растительным организмом, его особенностями. Оно называется транспирацией. Благодаря транспирации в поверхностных клетках листа возникает сосущая сила (равная примерно 0,1 атм), которая потянет воду из рядом расположенных клеток, и так далее, вплоть до сосудов. Таким образом, в растении создается верхний двигатель тока воды. У деревьев сосущая сила листьев достигает 20 атм, у травянистых растений 2—3 атм. Эта сосущая сила заставляет воду из корней подниматься по ксилеме, в основном по сосудам — полым трубкам. Столбики воды в сосудах не разрываются благодаря силе сцепления частиц воды между собой и со стенками сосудов. Эта сила может достичь 300 атм.

Таким образом, движение воды из почвы по растению обусловливается тремя силами: корневым давлением, сосущей силой листьев и силой сцепления частиц воды. Транспирация происходит и летом, и зимой; опадение листьев осенью — это приспособительная особенность растений для уменьшения транспирации, так как зимой подача воды корнями из замерзшей почвы сильно затруднена. Ветер усиливает транспирацию.

Различают устьичную и кутикулярную транспирацию. Первая раз в 20 интенсивнее, чем вторая.

Процесс устьичной транспирации можно подразделить на следующие этапы:

1) Переход воды из клеточных оболочек, где она находится в капельно-жидком состоянии, в межклетники. Это собственно процесс испарения. На этом этапе растение способно регулировать процесс транспирации (внеустьичная транспирация). Вода испаряется из капилляров. Когда воды в клетках достаточно, клеточные оболочки насыщены водой, силы поверхностного натяжения ослаблены. В этом случае молекулы воды легко отрываются и переходят в парообразное состояние, заполняя межклетники. При уменьшении содержания воды увеличиваются силы поверхностного натяжения, и вода с большей силой удержи-вается в клеточных оболочках. В результате интенсивность испарения сокращается. Таким образом, уже на первом этапе растение испаряет тем меньше воды, чем меньше ее содержится.

2) Выход паров воды из межклетников через устьичные щели. Как только часть паров воды выйдет из межклетников через устьичные щели, так сейчас же этот недостаток восполняется за счет испарения воды с поверхности клеток. Поэтому степень открытости устьиц является основным механизмом, регулирующим интенсивность транспирации. На этом этапе вступает в действие устьичная регулировка транспирации. При недостатке воды в листе устьица автоматически закрываются.

3) Диффузия паров воды от поверхности листа в более далекие слои атмосферы. Этот этап регулируется лишь условиями внешней среды.

Известно, что одно растение кукурузы за вегетационный период испаряет 150 кг воды, подсолнечника — 200 кг, гороха — 4 кг. Один гектар поля теряет за вегетационный период примерно 2000—2500 т воды.

Транспирация необходима растению, так как благодаря ей в растение поступают нужные ему минеральные вещества и не происходит перегрева листьев.

Количество воды, испаряемое с 1 м2 листовой поверхности за 1 ч, называется интенсивностью транспирации.

Очень небольшое количество воды, проходящей по растению, используется на образование органического вещества. Оно составляет всего 0,2 %, а 99,8 % испаряется. Количество воды, необходимое растению для создания 1 г сухого вещества, называется транспирационным коэффициентом. Его величина колеблется от 300 до 1000 г. У кукурузы он равен 233, у гороха — 416, гречихи — 578, картофеля — 636.

Транспирационный коэффициент может меняться в зависимости от внешних условий: влажности воздуха, температуры, влажности почвы, света, ветра.

Другой единицей сравнения растений в этом отношении будет продуктивность транспирации — количество граммов сухого вещества, образующегося при испарении 1 л (1000 г) воды. Чаще всего она равна 3—5 г.

Относительная транспирация — отношение воды, испаряемой листом, к воде, испаряемой со свободной водной поверхности той же площади за один и тот же промежуток времени.

Экономность транспирации — количество испаряемой воды (в мг) на единицу (1 кг) воды, содержащейся в растении.

Вопросы для самоконтроля

1. Какие вещества поступают в растение с восходящим током? Каковы причины восходящего тока?

2. Как происходит движение органических веществ по растению?

3. Что такое транспирация, от чего она зависит?

4. Что называют транспирационным коэффициентом? Чему он примерно равен?

5. Чем обусловливается транспирация?

6. Какие опыты доказывают существование корневого давления?

7. Какой опыт показывает сосущее действие листьев?

8. Что происходит при кольцевом надрезе веточки дерева?

 

Рекомендуемая литература: [3], [4], [6], [11], [12], [13].

Тема 3. ФОТОСИНТЕЗ

Общее уравнение фотосинтеза

Фотосинтез — это процесс трансформации поглощенной организмом энергии света в химическую энергию органических соединений. Главную роль в этом процессе играет использование энергии света для восстановления СО2 до уровня углеводов. Однако в процессе фотосинтеза могут восстанавливаться сульфат или нитрат, образовываться Н2; энергия света расходуется также на транспорт веществ через мембраны и на другие процессы. Поэтому часто говорят о фототрофной функции фотосинтеза, понимая под этим использование энергии света в различных реакциях в живом организме. Фотосинтез осуществляют высшие растения, водоросли и некоторые бактерии. Он играет определяющую роль в энергетике биосферы.

Фотосинтез описывают следующими уравнениями:

2О ® 4ОН- - 4е- +4Н+® 2Н2О + О2 + 4Н+

2НАДФ + 4е- + 2Н+® 2НАДФ×Н

+ + 2НАДФ×Н + СО2®2НАДФ +Н2О+СН2О

СО22О → СН2О + О2.

Пигменты пластид

Фотосинтез осуществляется в тех частях растения, где имеются зеленые тельца — хлоропласты. Так как хлоропластов больше всего в листьях, то лист является основным органом ассимиляции углерода. У надземных растений углекислый газ поступает через устьица, у водных — вместе с водой, в которой он растворен. Хотя устьичные щели составляют примерно 1% площади листа, углекислоты в лист поступает достаточное количество.

В мезофилле листа СО2 передвигается по межклетникам и поступает в клетки палисадной и губчатой паренхимы через стенки, вместе с водой. Дальнейшая судьба СО2 связана с хлоропластами. Именно в них ходит фотосинтез. Снаружи хлоропласты имеют двойную белково-липоидную оболочку, внутри — зернистую строму, в которой наблюдаются пластинчатые двойные мембраны — ламеллы, состоящие из молекул белка и сложных эфиров и содержащие фосфор и пигменты. Длинные ламеллы тянутся вдоль всей пластиды. Короткие ламеллы собраны стопками (вроде столбиков монет). Их называют гранами. В ламеллах происходит преобразование световой энергии в химическую, протекают различные биохимические реакции. При благоприятных условиях в пластидах образуется хлорофилл.

Пигменты пластид относятся к трем классам веществ: хлорофиллам, фикобиллинам и каротиноидам.

У высших растений и у водорослей обнаружены хлорофиллы a, b, c, d. Все фотосинтезирующие растения, включая все группы водорослей, а также цианобактерии содержат хлорофиллы группы a. Хлорофилл b представлен у высших растений, у зеленых водорослей и эвгленовых. У бурых и диатомовых водорослей вместо хлорофилла b присутствует хлорофилл c, а у многих красных водорослей — хлорофилл  d.

В твердом виде хлорофилл а представляет собой аморфное вещество сине-черного цвета. Температура плавления хлорофилла а 117—120 °С. Хлорофиллы хорошо растворимы в этиловом эфире, бензоле, хлороформе, ацетоне, этиловом спирте, плохо растворимы в петролейном эфире и нерастворимы в воде.

Раствор хлорофилла а в этиловом эфире имеет сине-зеленый цвет, хлорофилла b — желто-зеленый. Резко выраженные максимумы поглощения хлорофиллов лежат в красной и синей частях спектра. В этиловом эфире максимумы поглощения хлорофиллов группы а в красной части спектра — в пределах 660—663 нм, в синей — 428—430 нм, хлорофилла b — соответственно в пределах 642—644 и 452—455 нм. Хлорофиллы очень слабо поглощают оранжевый и желтый свет и совсем не поглощают зеленые и инфракрасные лучи.

Растворы хлорофиллов в полярных растворителях обладают яркой флуоресценцией (люминесценцией). В этиловом эфире у хлорофилла а наблюдается рубиново-красная флуоресценция с максимумом 668 нм, у хлорофилла b —648 нм, т. е. максимумы флуоресценции в соответствии с правилом Стокса несколько сдвинуты в более длинноволновую часть спектра по отношению к максимумам поглощения. Агрегированный хлорофилл и хлорофилл в живом листе флуоресцируют слабо. Растворы хлорофиллов способны также к фосфоресценции (т. е. длительному послесвечению), максимум которого лежит в инфракрасной области.

Отметим, что молекула хлорофилла благодаря структурным и физико-химическим особенностям способна выполнять три важнейшие функции: 1) избирательно поглощать энергию света, 2) запасать ее в виде энергии электронного возбуждения, 3) фотохимически преобразовывать энергию возбужденного состояния в химическую энергию первичных фотовосстановленных и фотоокисленных соединений.

Сине-зеленые водоросли (цианобактерии), красные морские водоросли и некоторые морские криптомонады помимо хлорофилла а и каротиноидов содержат пигменты фикобилины. Наиболее известные представители фикобилинов — фикоэритробилины и фикоцианобилины. Первые преобладают у красных водорослей и определяют их цвет, вторые — у сине-зеленых.

Максимумы поглощения света фикобилинов находятся между двумя максимами поглощения у хлорофилла — в оранжевой, желтой и зеленой части спектра. У водорослей фикобилины — дополнительные пигменты, выполняющие вместо хлорофилла b функции светособирающего комплекса. Около 90 % энергии света, поглощенного фикобилинами, передается на хлорофиллы а.

Каротиноиды—жирорастворимые пигменты желтого, оранжевого, красного цветов — присутствуют в хлоропластах всех растений. Они входят также в состав хромопластов в незеленых частях растений, например в корнеплодах моркови, от латинского наименования которой (Daucus carota L.) они и получили свое название. В зеленых листьях каротиноиды обычно незаметны из-за присутствия хлорофилла, но осенью, когда хлорофилл разрушается, именно каротиноиды придают листьям характерную желтую и оранжевую окраску.

К каротиноидам относятся три группы соединений: 1) оранжевые или красные пигменты каротины40Н56); 2) желтые ксантофиллы40Н56О2 и С40Н56О4); 3) каротиноидные кислоты —продукты окисления каротиноидов с укороченной цепочкой и карбоксильными группами (например, С20Н24О4— кроцетин, имеющий две карбоксильные группы).

Каротины и ксантофиллы хорошо растворимы в хлороформе, бензоле, сероуглероде, ацетоне. Каротины легко растворимы в петролейном и диэтиловом эфирах, но почти нерастворимы в метаноле и этаноле. Ксантофиллы хорошо растворимы в спиртах и значительно хуже в петролейном эфире. Синтез каротиноидов происходит в темноте, но резко ускоряется при действии света. Спектры поглощения каротиноидов характеризуются двумя полосами в фиолетово-синей и синей областях от 400 до 500 нм. и липидами фотосинтетических мембран.

Каротиноиды выполняют ряд функций, главные из которых: 1) участие в поглощении света в качестве дополнительных пигментов; 2) защита молекул хлорофиллов от необратимого фотоокисления. Возможно, каротиноиды принимают участие в кислородном обмене при фотосинтезе.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: