Проблеми нафтової, вугільної та ядерної енергетики

 

Одна з проблем забезпечення енергоресурсами сучасної цивілізації полягає в тому, що економіка більшості країн світу протягом тривалого часу розвивалась, орієнтуючись на нафту й продукти її переробки. Перехід на інші джерела енергопостачання вимагає значних капіталовкладень, пов'язаних зі структурною перебудовою економіки, які досить часто не під силу окремим країнам. Щодо нафти, то її запасів у світі значно менше, ніж інших енергетичних ресурсів. При таких темпах її споживання, які існували у 80-ті роки, розвіданих запасів вистачить світовому господарству лише на 37-40 років, а якщо взяти до уваги прогнозні ресурси, то нафтова ера триватиме близько 120 років. Отже, проблема, яка сьогодні досить жваво дискутується в усьому світі, зводиться до того, чи встигнуть усі країни перевести свою економіку на новий вид енергозабезпечення і які ресурси для цього мають бути використані.

Виникнення й загострення сировинної проблеми змусило переоцінити наявні мінеральні ресурси, в результаті чого стало ясно, що резерви багатьох видів корисних копалин пов'язані з екологічно шкідливими джерелами, такими, зокрема, як нафтові піски, бітумні сланці та ін., розробка яких загрожує навколишньому середовищу й погіршує екологічну ситуацію в світі

Очікується, що споживання нафти у світовій економіці у період до 2015р. буде зростати у середноьму на 1,5% на рік. Найбільш високі темпи приросту очікуються у країнах, котрі не відносяться до розвинених (на 2,5% в рік), що обумовленно швидким розвитком там переробних галузей промисловості та формуванням там сучасної інфраструктури. У розвинених кріїнах споживання нафти буде зростати на 0,7% у рік здебільшого для задоволення потреб повітряного та автомобільного транспорту. З середини 80-х рр. Відзначається все більш уповільнений ріст світового попиту на нафту у порівнянні з темпами розвитку світової економіки загалом.

Зростає частка важковидобувних запасів, що потребують високих затрат на освоєння. Виснаження запасів нафти, попит на альтернативний вид палива – біологічний, деградація оточуючого серидовища та екстремальні метеопрояви, викликані кліматичними змінами – все це в комплексі створює великі проблеми для виробництва продовольства у світі.

Нафта була, є та у близькому майбутньому залишиться основним джерелом первиноої енергії, споживання котрої неуклінно збільшується у зв’язку з подальшим розвитком світової економіки. Одночасно зростає викоритсання нафти та нафтопродуктів в якості сировини для хімічної промисловості, що, як відомо, економічно більш виправданно й ефективно у порівнянні з прямим енергетичним використанням вуглеводню.

Нафтові запаси розповсюдженні між крайнами нерівномірно, наприклад у Саудівській Аравії є більше 25% світового запасу нафти, а у Андори лише 2%. Відповідно споживання та виробництво у крїнах відрізняється, США при виробництві нафти у 12% споживає її у два рази більше.

У зв’язку з тим, що споживання нафти з року у рік збільшується, виникає реальна загроза виснаження нафтових запасів. У зв’язку з цим необхідно застосовувати відповідні заходи, щоб недопустити цього:

-застосування технологій підвищення ефективності нафтовидобутку;

-подовження термінв експлуатації виснаженних нафтових покладів;

-відновлення фонду нафтових свердловин, що простоює;

-підвищення рентабельності і ріст прибутку в діяльності нафтовидобувних підприємств.

А так само необхідно думати про альтернативу звичайним родовищам нафти. Це може бути перехід на газ, вугілля, атомну енергію, гідроенергію. Нафту можна замінити на:

1.Синтетичне паливо (рідке пальне, що отримується із вугілля або біомаси);

2.Біодизельне паливо (пальне на основі рослинних або тваринних олій);

3.Алкоголь (етанол і метанол, котрі витягуються із зерна, деревини або біомаси);

4. Електрика (накопичена на акумуляторах або батареях);

5. Водень.

Незважаючи на розвиток альтернативних джерел нафта в найближчі 30 років залишиться основною сировиною для виробництва палива. Головне не запускати цю ситуацію, і раціонально вирішити це завдання, тому що нафта на даний момент повністю замінена іншими ресурсами бути не може.

Проблеми вугільної промисловості. У вугільній промисловості світу можна виділити на мій погляд 3 основні проблеми:

1.Збитковість вугільної промисловості. Починаючи із середини 90-х років, на світовому ринку вугілля ціни мали чітко виражену тенденцію зниження, унаслідок загального здешевлення вартості енергоносіїв і зниженням ролі вугілля в енергобалансах ведучих країн-споживачів. Вугільна промисловість в усьому світі сама по собі є збитковою і дотаційною сферою, для її стабільного існування в неї необхідні грошові уливання з боку держави. Таким чином, зниження цін на вугілля ще більш знизило рентабельність видобутку і виробництва вугілля, крім того, вугілля значно уступає природному газу і нафті по витратних і екологічних показниках його використання. Особливо яскраво цей факт знайшов відображення в економічно нестабільних країнах. Так, наприклад у Росії була припинено діяльність приблизно 2/3 вугільних розрізів. А професія шахтаря, що вважалася престижної в радянський час, різко здала свої позиції. Держава практично призупинила виплату зарплати гірникам, що викликало величезну кількість страйків по всій країні.

2.Травматизм на підприємствах. Як наслідок, у зв'язку з недостатньою підтримкою вугільної промисловості з боку держав деяких країн, а отже і різкому зменшенні виділюваних засобів на охорону праці, збільшився ріст травматизму на підприємствах. Самими неблагополучними країнами в цьому плані є Китай і Росія, щорічно при видобутку вугілля гинуть сотні, а те і тисячі людей. 3.Екологічні проблеми. Однією із серйозних проблем також є шкода, яка завдається природі, при добуванні і переробці вугілля. По-перше, це вивільнення в атмосферу метану при розробці родовищ. По-друге, для одержання, наприклад, вугілля що коксується, його необхідно нагрівати до визначеної температури. Як наслідок, в атмосферу викидається велика кількість вуглекислого газу і деяких інших з'єднань, що згубно впливають на атмосферу Землі, і сприяють виникненню парникового ефекту.

Довгострокові перспективи пророкувати складно, але можна припустити, що якщо запаси нафти будуть продовжувати зменшуватися і не буде знайдено нових чи родовищ інших альтернативних видів палива, те вже до 2030-му року вугілля може стати основним джерелом паливної енергії (має значні запаси у порівнянні з нафтою). Людству неминуче доведеться вкладати кошти на розробку програм по зниженню забруднення навколишнього середовища через добування виробництво вугілля. У зв'язку з цим, розвиток вугільної промисловості прийме світові масштаби. Безсумнівно також зростуть і ціни на вугілля, а отже його виробництво стане рентабельним.

Існують дві найбільш серйозні проблеми атомної енергетики: економічна - атомне паливо досить дороге, вартість будівництва атомних станцій, створення та підтримання на належному рівні систем забезпечення реакторів ядерним пальним, захоронення відпрацьованого палива і радіоактивних відходів та вивід ядерних об’єктів з експлуатації; й екологічна - імовірність аварій та проблема захоронення ядерних відходів. Проти АЕС існує ще один досить серйозний аргумент - це розповсюдження ядерного озброєння.

Найбільш істотні фактори –

· локальний механічний вплив на рельєф - при будівництві;

·стік поверхневих і ґрунтових вод, що містять хімічні і радіоактивні компоненти;

·зміна характеру землекористування й обмінних процесів у безпосередній близькості від АЕС;

· зміна мікрокліматичних характеристик прилеглих районів.

Виникнення могутніх джерел тепла у виді градирень, водойм - охолоджувачів при експлуатації АЕС звичайно помітним чином змінює мікрокліматичні характеристики прилеглих районів. Рух води в системі зовнішнього тепловідводу, скидання технологічних вод, що містять різноманітні хімічні компоненти впливають на популяції, флору і фауну екосистем.

Особливе значення має поширення радіоактивних речовин у навколишнім просторі. У комплексі складних питань по захисту навколишнього середовища велику суспільну значимість мають проблеми безпеки атомних станцій (АС), що йдуть на зміну тепловим станціям на органічному викопному паливі. Загальновизнано, що АС при їхній нормальній експлуатації набагато - не менш чим у 5-10 разів "чистіше" в екологічному відношенні теплових електростанцій (ТЕС) на куті. Однак при аваріях АС можуть робити істотний радіаційний вплив на людей, екосистеми. Тому забезпечення безпеки екосфери і захисту навколишнього середовища від шкідливих впливів АС - велика наукова і технологічна задача ядерної енергетики, що забезпечує її майбутнє.

Більшість АЕС у світі використовують теплові легководні реактори (LWR). До цього класу належать усі нині діючі українські енергоблоки. LWR вимагають збагаченого урану, що зумовлює залежність неядерних країн від постачальників ядерного палива. Тому деякі держави (зокрема Румунія) будують важководні реактори (HWR), де використовується паливо з природного (незбагаченого) урану. Однак глибина вигоряння палива у HWR у 4—6 разів менша, ніж у LWR, а це збільшує об’єми відпрацьованого (опроміненого) ядерного палива (ОЯП) та зумовлює відповідну потребу у місткіших сховищах.

Далі: існуючі на сьогодні технології переробки ОЯП передбачають вилучення з нього плутонію, а створення власних збагачувальних комбінатів і потужностей для переробки ОЯП у неядерних країнах дає їм можливість напрацьовувати збройовий уран і плутоній на основі цілком легальних каналів атомної енергетики.

Ще одним недоліком LWR є те, що в якості палива в них використовується 235U, а його запасів у розвіданих на сьогодні родовищах вистачить лише на 50—100 років. Тому треба ширше запроваджувати в енергогенеруючі процеси 238U, запасів якого вистачить на кілька тисячоліть.

Перспективи нової ядерної енергетики. За піввіку свого існування ядерна енергетика (ЯЕ) придбала статус широкомасштабної енергопромислової світової галузі. Забезпечуючи 6,5% світових енергетичних потреб, вона виробляє 16% світової електроенергії.

Майже 20 держав більш ніж на чверть залежать від одержання електроенергії на атомних станціях. Передові позиції серед них займають Франція (78,5% електроенергії країни виробляють АЕС), Литва (69,6%), Словаччина (56,1%), Бельгія (55,6%), Україна (48,5%) тощо.

Сьогодні, за даними МАГАТЕ в 30 країнах світу експлуатується 441 енергетичний ядерний реактор. Основу цього парку (близько 60%) становлять легководні реактори (типу європейського PWR, російського ВВЕР та ін.). Експлуатуються також важководні реактори типу CANDU, високотемпературні реактори HTR, ядерні реактори кип’ячого типу BWR, високотемпературні реактори з газовим охолодженням HTGR та інші.

Стосовно масштабів подальшого розвитку атомної енергетики в світі існують прямо протилежні погляди – від того, що вона стане основною галуззю енергозабезпечення, до можливості поступового її згортання як потенційно небезпечної. Прихильники ядерної енергетики спираються на такі її переваги.

У ядерній енергетиці фактично не відбувається викидів парникових газів. Повний ядерно-енергетичний цикл, від видобутку урану до поховання відходів, включаючи спорудження реакторів і установок, характеризується викидом лише 2-6 грамів вуглецю на 1кВтг виробленої електроенергії.

Приблизно стільки ж виділяється при використанні енергії вітру й сонця, що на два порядки нижче, ніж при використанні вугілля, нафти або навіть природного газу. Якщо закрити АЕС в усьому світі й замінити їх пропорційним сполученням неядерних джерел, то збільшення викидів вуглецю в результаті цього складе 600 млн тонн на рік. Це приблизно вдвічі перевищило б загальний обсяг, на який в 2010 році можуть бути скорочені викиди завдяки застосуванню Кіотського протоколу. Тобто, такий розвиток електроенергетики є явно неприйнятним.

Ядерна енергетика в порівнянні з традиційною енергетикою на сьогоднішній день має кращу забезпеченість паливними ресурсами. При використанні існуючих сьогодні технологій ядерного циклу світових запасів урану вистачить до кінця сторіччя, а в разі переходу на нові технології паливноресурсна база ЯЕ стане практично необмеженою. Крім того, вартість електроенергії, що виробляється на АЕС, має низький рівень залежності від ціни на паливну сировину.

Лідерами у нарощуванні атомних потужностей є Китай та Індія. В їхніх найближчих планах для енергозабезпечення швидко зростаючих економік є будівництво кількох десятків нових ядерних блоків. Для деяких країн (наприклад, таких, як Франція або Японія) відсутність власних нафтових або газових ресурсів уже є достатнім мотивом збереження ЯЕ в структурі енергетичного балансу. Новими членами “атомного клубу” планують стати такі країни, як Польща, Туреччина, Індонезія й В'єтнам.

За прогнозами світових енергетичних організацій, до 2030 р. частка ядерної енергетики у світовому енергобалансі збережеться практично на існуючому сьогодні рівні, а це означає, що загальні її потужності зростуть приблизно на 50%.

Взагалі, темпи й масштаби подальшого розвитку ядерної енергетики прямо залежать від першочергового вирішення питань безпеки, поводження з радіоактивними відходами та забезпечення нерозповсюдження ядерної зброї.

Сьогодні в світі велика увага приділяється розвитку перспективних безпечних ядерних технологій, які не тільки розширять ресурсну базу ядерної енергетики, але й вирішать проблему ядерних відходів, ядерного нерозповсюдження з одночасним забезпеченням конкурентоспроможності відносно інших джерел енергії. Лідерами в цьому процесі є Росія і США.

Навесні 2000 року США виступили ініціаторами проекту за назвою “Міжнародний форум четверте покоління” (GIF) з метою аналізу й відбору перспективних технологій ядерних реакторів нового покоління для спільних досліджень, розробки й уведення в експлуатацію орієнтовно після 2030 року. Восени того ж року Росія виступила з ініціативою створення під егідою МАГАТЕ міжнародного проекту з інноваційних ядерних реакторів та паливних циклів (проект INPRO).

Статут GIF був прийнятий у середині 2001 року. Десять країн-членів GIF (США, Аргентина, Бразилія, Канада, Франція, Японія, Південна Корея, ПАР, Швейцарія й Великобританія) відібрали шість концепцій перспективних ядерно-енергетичних систем для того, щоб зосередити спільні зусилля на розвитку цих систем у майбутньому. Ці концепції включають наступні технології: реактор з натрієвим теплоносієм, реактор зі свинцевим теплоносієм, газоохолоджуваний реактор на швидких нейтронах, високотемпературний газоохолоджуваний реактор, надкритичний водоохолоджуваний реактор, реактор на розплавах солей.

В основі майже всіх реакторних систем, за винятком високотемпературного газоохолоджуваного реактора, лежить принцип закритого паливного циклу, що робить їх привабливими, насамперед, з погляду мінімізації кількості довгоживучих радіонуклідів. Перші три з перелічених - реактори на швидких нейтронах.

Сильними сторонами проекту GIF є опора на потужні фінансові і технологічні ресурси країн-учасниць, націленість на виконання великої програми науково-дослідних і дослідницько-конструкторських робіт, на одержання конкретних результатів щодо покоління III+ ядерних реакторів у найближчій перспектив, щодо покоління IV, та щодо більш далекої перспективи (2030 рік). Втім, діяльність в рамках GIF спрямована винятково на задоволення енергетичних потреб кількох індустріально розвинених країн.

У той час, як GIF розглядає окремо взяті ядерно-енергетичні системи, у рамках INPRO учасники виробляють стандарти для майбутньої ядерної енергетики, заснованої на комбінації декількох систем.

Російська ініціатива спрямована на організацію великомасштабного міжнародного співробітництва з розробки конкурентоспроможних, екологічних, безпечних до поширення ядерної зброї інноваційних ядерних технологій, здатних забезпечити сталий розвиток суспільства в довгостроковому плані. Сьогодні в проекті INPRO приймають участь 22 країни і Європейська Комісія.

У рамках INPRO розглядаються можливі реакторні технології й технології паливного циклу, які зможуть в найближчі п'ятдесят років стати основним джерелом енергії. Серед потенційних реакторних систем майбутнього розглядаються водоохолоджувальні, газохолоджувальні, з металевим теплоносієм і швидкі реакторні системи на розплавах солей.

Росія має найбільший досвід в розробці таких систем. Перший розроблений нею реактор на швидких нейтронах БН-350 з натрієвим теплоносієм успішно відпрацював з 1973 по 1988 р. в м. Шевченко (нині – Актау, Казахстан). Сьогодні на Білоярській АЕС працює (починаючи з 1980р.) швидкий реактор БН-600, також з натрієвим енергоносієм. Найбільш потужний удосконалений енергетичний реактор на швидких нейтронах БН-800 буде споруджено на Білоярській АЕС орієнтовно після 2010 р. Не пізніше 2025 р. на основі досвіду БН-800 Росія має наміри спорудити серійний комерційний реактор БН-1600.

Розробка реакторів на швидких нейтронах проводиться і в інших країнах. Так, в Китаї споруджується експериментальний швидкий реактор потужністю 65 МВт (тепл.), в Японії – реактор-розмножувач на швидких нейтронах MONJU, Франція розробляє європейський реактор на швидких нейтронах.

Сильні сторони проекту INPRO полягають в розумінні національних і регіональних особливостей економічного розвитку, в можливості формування на цій основі вимог до інноваційних ядерних технологій у країнах-учасницях і впливу на процеси розвитку атомної енергетики в цих країнах через МАГАТЕ як авторитетну міжнародну організацію, спеціалізоване агентство ООН, що має налагоджені канали взаємодії з урядами країн-учасниць і міжнародними організаціями.

Однак промислово розвинені країни, які мають розгалужену ядерно-енергетичну інфраструктуру (США, Франція, Японія й Великобританія), не є учасниками цього проекту. Дві густонаселені країни - Індія й Китай, що характеризуються швидкими темпами економічного розвитку й націлені на розгортання широко-масштабної ядерної енергетики, є учасниками INPRO, але їхній фінансовий і науково-технічний внесок дуже малий у порівнянні з їхніми цілями й завданнями. На сьогоднішній день Росія є основним фінансовим донором проекту. Очевидною є нестача необхідного фінансування для реалізації цього проекту у заплановані терміни.

Проекти INPRO й GIF мають багато спільних завдань. Ключове з них - закриття каналів можливого поширення ядерної зброї, характерних для сучасної атомної енергетики. Ефективне використання внутрішніх бар'єрів повинно зміцнити зовнішні бар'єри. За висновками фахівців, зіставлення стану реалізації проектів INPRO і GIF показує можливість їх синхронізувати при гармонізації постановки кінцевого завдання: розвиток економічно конкурентної великомасштабної ядерної енергетики на базі замкнутого паливного циклу й технологій, захищених від поширення ядерної зброї. МАГАТЕ прагне до того, щоб дослідження в рамках обох проектів були скоординовані і взаємно доповнювали одне одного. Позитивною подією в цьому напрямку слід вважати вступ Росії до проекту GIF у липні 2006 року.

Водночас з розробкою новітніх ядерних технологій в світі продовжується удосконалення вже апробованих ядерних технологій, це: легководні реактори (модифікації російського ВВЕР, новий європейський реактор EPR), важководні реактори (канадський CANDU, індійський AHWR), високотемпературні газоохолоджувальні реактори та ін.

Треба також відзначити, що останнім часом у зв’язку з пошуком вирішення проблем сучасної ядерної енергетики відновлюється інтерес до створення торій-уранових паливних циклів.

Основні дослідницькі й конструкторські роботи з цієї тематики проводилися в Німеччині, Індії, Японії, Росії, Великобританії та США. Цілком або частково торієвим паливом завантажувалися кілька дослідних реакторів, але до комерційної експлуатації енергетичних ядерних реакторів справа не дійшла. Втім, дослідницькі роботи в ряді країн продовжуються. Індія, яка володіє значними запасами торію, висунула завдання впровадження торієвого циклу як основного завдання промислового виробництва електроенергії.

Поновлення інтересу до торію обумовлено тим, що його світові запаси в три рази перевищують запаси урану. Дослідженнями встановлено, що ефективна та безпечна робота ядерних реакторів забезпечується при використанні торій-уранового паливного циклу, основою якого є торій. Поряд з вирішенням ресурсної проблеми, до переваг цього циклу варто також віднести більш ефективне використання палива (за рахунок його більш глибокого вигоряння) та значно менші обсяги виробництва радіоактивних відходів. Особливістю цього циклу є те, що в його процесі утворюється ізотоп урану U-233, який сам по собі є ефективною складовою ядерного палива. Але наявність цього ізотопу завжди пов’язана з присутністю високорадіоактивного ізотопу U-232, що ускладнює виробництво палива та його переробку і, як наслідок, робить ці процеси дуже коштовними. У зв’язку з цим окремі фахівці стверджують, що має бути зроблено ще великий обсяг робіт, перш ніж торієвий цикл буде поставлено на комерційну основу. Але поки є можливість видобувати дешевий уран, це є малоймовірним.

Таким чином, з огляду на вимоги безпеки й надійності, нові технологічні рішення в ядерній енергетиці, можуть бути впевнено апробовані тільки в міжнародному ядерному співтоваристві, що акумулювало досвід уже розвинених технологій. Незважаючи на те, що йдеться про багатостороннє міжнародне співробітництво, реалізація цих рекомендацій залежить, насамперед, від позицій США й Росії й має пряме відношення до двостороннього співробітництва цих країн в області нерозповсюдження ядерної зброї. Сьогодні у двох країн є необхідний науково-технічний потенціал для співробітництва в атомній галузі. Потрібно лише прийняття політичного рішення, що відкриє дорогу для повноцінних спільних проектів з розробки й впровадження інноваційних реакторних технологій, проте їх комерційне впровадження слід очікувати не раніше 2025 року.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: