Способы доставки приборов в действующие горизонтальны скважины

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственное образовательное учреждение высшего профессионального

Образования «Пермский государственный университет»

Геологический факультет

Кафедра геофизики

Каротаж продуктивности горизонтальных скважин действующего фонда

 

Исполнитель: студент II курса магистратуры Югова Надежда

Проверил: Шумилов Александр Владимирович

 

 

 

 

 

Пермь 2010

Оглавление

Введение 3
Способы доставки приборов в действующие горизонтальны скважины   4
Технология промыслово-геофизических исследований действующих горизонтальных скважин   7
Проблемы геофизических исследований горизонтальных скважин 10
Проблемы метрологического обеспечения геофизических исследований в горизонтальных скважинах   13
Эффективность горизонтальных скважин по данным интерпретации   16
Заключение 18
Литература 19
   
   
   
   
   
   
   
   
   
   
   

 

 

 

Введение

 

Практические основы бурения ГС были заложены в России еще в 30-е годы. Однако, несмотря на появление определенного опыта в строительстве ГС, предпочтение было отдано технологиям разработки нефтяных месторождений, основанным на бурении вертикальных и наклонно направленных скважин.

Если во всем мире до 1980 г. на нефть пробурено всего несколько сотен ГС (причем большая часть – в нашей стране), то после 1988 г. пробурено около 2000 ГС, в России - только около 180.

В последние годы сохраняется тенденция увеличения объемов бурения ГС. Одновременно возникают новые проблемы, связанные с их исследованиями, в том числе потокометрическими методами. Поскольку в ГС удельные дебиты, как правило, существенно меньше, а направление и расслоение как одно-, так и многофазного потока намного сложнее, чем в вертикальных скважинах, сложность становится очевидной.

В условиях ГС существует объективная сложность доставки геофизических приборов, особенно в комплексном (многомодульном) исполнении. Это не позволяет выполнять одновременную запись нескольких контрольных параметров, а она является немаловажным условием повышения достоверности исследований. Отсутствие такой возможности приходится компенсировать многократным спуском в интервал исследований разнотипных приборов, что значительно усложняет воспроизведение нужного режима испытаний, а соответственно, получение необходимой и достоверной информации при сопоставлении результатов исследований.

Сложность привязки результатов каротажа к стволу является общей проблемой при проведении в ГС всех видов каротажа в случае карбонатного разреза.

 

 

Способы доставки приборов в действующие горизонтальны скважины

 

Актуальность проблемы исследования горизонтальных эксплуатационных скважин общеизвестна. Основной задачей, стоящей перед геофизикой, является выявление интервалов притока и определение состава жидкости.

В Татарстане и Удмуртии первые исследования ГС в динамическом режиме при возбуждении скважин компрессором или свабированием начали проводиться в 1995-1996 гг. с помощью отечественных технологических систем «Горизонталь-5», а в последующем стала применяться кабельная технология на основе жесткого геофизического кабеля (ЖГК).

В 1995 году в НПФ «Геофизика» был разработан и опробован первый вариант технологии геофизического исследования горизонтальных эксплуатационных скважин, которая показала себя более эффективно по сравнению с зарубежными аналогами, так как была менее трудоемка, содержала несложные и недорогие приспособления, обеспечивающие проведение исследований с помощью стандартного геофизического и промыслового оборудования.

Технология обеспечивает проведение ГИС в горизонтальных скважинах, оборудованных НКТ. Перемещение геофизического прибора в горизонтальном стволе осуществляется с помощью движителя, закрепляемого выше геофизического прибора на каротажном кабеле. Технологические операции выполняются в следующей последовательности. Через НКТ в скважину опускают прибор на каротажном кабеле. На кабельной головке прибора закрепляют нижний кабельный зажим, соединяют с зажимом специальные штанги движителя и закрепляют их на кабеле верхним кабельным зажимом. В собранном виде геофизический инструмент через НКТ опускают в ствол скважины. При достижении искривленной части ствола прибор скользит под действием усилия, развиваемого движителем, и переходит в горизонтальный ствол. Далее по искривленной части ствола скользят штанги движителя и за счет своей жесткости передают усилие, развиваемое движителем, прибору, который достигает, таким образом, забоя скважины. В процессе спуско-подъема инструмента кабель уплотняют на устье скважины сальником, в затрубье закачивают воздух и, получая приток нефти из НКТ, регистрируют геофизическую информацию.

Несмотря на кажущуюся простоту, техническое исполнение узлов и блоков технологической оснастки претерпело уже несколько модернизаций.

Установки с длинномерной безмуфтовой трубой (ДБТ) – колтюбинг – широко применяется во всем мире для выполнения работ в процессе эксплуатации нефтяных и газовых скважин, в том числе, для их ремонта.

Колтюбинг позволяет восстанавливать фонд скважин, эксплуатируемых фонтанным, газолифтным и механизированным способом, выполнять технологические операции в горизонтальных и сильно искривленных участках ствола, в том числе при геофизических исследованиях. Технологический процесс осуществляется непрерывно, без глушения, при давлении на герметизируемом устье скважины до 25 МПа.

Его достоинствами являются:

1) 100% доставка геофизической аппаратуры на забой при любой длине горизонтального участка скважины;

2) использование стандартной геофизической аппаратуры;

3) использование общепринятой технологии исследования скважин на притоке при снижении уровня компрессором.

В 1997-1998 гг. в России начала применяться технология «гибких труб» для исследования действующих горизонтальных скважин в ОАО «Сургутнефтегаз». В ОАО «Татнефть» из-за неполной комплектности технологического комплекса «гибкая труба» эта технология для геофизических исследований ГС начала применяться только в 2002 г.

К существующим агрегатам ДБТ в 1999 году прибавилась еще одна разработка. Совместными усилиями НПО «Сейсмотехника» (г. Гомель), Белорусского фонда развития и поддержки изобретательства и рационализации (г. Минск) и ООО «НГТ-ПЛЮС» (г. Москва) спроектирован и изготовлен агрегат для ремонта скважин РАНТ-10. По сравнению с российскими и зарубежными аналогами он обладает рядом преимуществ:

- в конструкции агрегата РАНТ-10 устранены недостатки его прототипов, он приспособлен к эксплуатации в сложных климатических и дорожных условиях, проще в обслуживании и управлении;

- РАНТ-10 минимум на 25% дешевле зарубежных аналогов.

В 2000 г. было предложено опробовать технологию проведения геофизических исследований ГС и БГС через межтрубное пространство в скважинах с эксцентрической подвеской штанговых насосов, применив для спуска приборов специальный кабель с повышенной осевой жесткостью, имеющий диаметр 17,6 мм, предполагая, что такой кабель будет менее подвержен захлесту за насосно-компрессорные трубы. Таким образом, впервые в нефтепромысловой практике проведены комплексные исследования горизонтального ствола работающей ГС путем доставки глубинных приборов по межтрубному пространству на специальном геофизическом кабеле с повышенной осевой жесткостью с последующими замерами дебита скважины, уровня жидкости и давления в затрубном пространстве и построением КВД. Конструкция такого кабеля и способ исследований ГС разработаны и запатентованы Волго-Уральским центром научно-технических услуг «Нейтрон».

Опыт работы ОАО «Когалымнефегеофизика» показывает, что доставка потокометрических приборов к забоям скважин при помощи жесткого геофизического кабеля (ЖГК) далеко не всегда бывает успешной. Применение ЖГК ограничивает следующие конструкции ГС и БС:

1) сложная форма профилей горизонтальных участков;

2) наличие пакеров и мест сужения диаметров обсадной колонны (фильтра) в горизонтальной части ствола;

3) высокая интенсивность набора кривизны;

4) наличие достаточно протяженных наклонных участков.

Главным недостатком скважинных электромеханических инструментов, использующих специальные двигатели (WELL TRACTOR зарубежного производства), предназначенных для принудительного перемещения кабельных геофизических приборов непосредственно в стволе ГС, является низкая скорость перемещения (не более 10 м в минуту). Это недостаточно для регистрации быстроменяющихся динамических процессов в ГС, характеризующихся высоким коэффициентом продуктивности эксплуатируемых объектов.

Специалисты ведущих сервисных геофизических предприятий России признают, что в настоящее время существуют лишь два надежных ТК доставки приборов к забоям эксплуатирующихся ГС:

- ТК COILED TUBING (гибкая труба) зарубежного производства;

- ТК «Комплекс для доставки геофизических приборов к забоям горизонтальных скважин» (ТК ЛАТЕРАЛЬ) отечественного производства.

У ТК COILED TUBING есть лишь один серьезный недостаток по сравнению с ТК ЛАТЕРАЛЬ, препятствующих его широкому применению, - это дороговизна.

ТК ЛАТЕРАЛЬ обеспечивает доставку приборов к забоям ГС при помощи насосно-компрессорных труб (НКТ) малого диаметра, сборка и спуск которых производится по существующим у буровых предприятий технологиям. Ключевым узлом ТК ЛАТЕРАЛЬ является УОЭС или «мокрый контакт». Исследования выполняются в такой последовательности: к нижней части НКТ подсоединяются скважинный прибор и неподвижная часть УОЭС. Затем выполняется спуск в скважину рассчитанной длины колонны НКТ малого диаметра. После этого внутрь труб помещают смонтированную на геофизическом кабеле подвижную часть УОЭС. Вместе с кабелем под собственным весом подвижная часть доставляется к неподвижной части и фиксируется на ней. Далее колонна труб НКТ при помощи кабельного зажима крепится к кабелю и опускается вместе с геофизическим прибором на заданную глубину.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: