Водоподъемные устройства

Гидравлический таран

Очень простой и во многих случаях экономичной водоподъ­емной установкой является гидравлический таран. Для подъема воды таран использует энергию протекающего через него потока и не требует установки двигателя. Непремен­ным условием для работы тарана является расположение его ниже уровня воды в источнике водоснабжения.

Гидравлические тараны используют для водоснабжения небольших населенных пунктов и промышленных предприятий, лесных поселков, лес­промхозов, колхозов, животноводческих ферм и др. Таран мо­жет быть применен там, где имеется падение потока высотой не менее .

Схема таранной установки показана на рис. 92. Из источ­ника водоснабжения 1 вода поступает в таранную установку по питательной трубе 2. Таран имеет ударный клапан 3, нагнета­тельный клапан 4 и воздушный колпак 5. По нагнетательной трубе 6 вода подается в бак 7.

Принцип действия гидравлического тарана заключается в следующем. При нажиме на рукоятку открывается ударный клапан. При этом вода из источника водоснабжения начинает течь по питательной трубе и через открытый ударный клапан вытекает наружу.

 

 

Рис. 92 Гидравлический таран

1 – источник водоснабжения; 2 – питательная труба; 3 – ударный клапан; 4 – нагнетательный клапан; 5 – воздушный колпак; 6 – нагнетательная труба; 7 – бак.

 

По мере возрастания скорости движения воды в питательной трубе давление на клапан будет увеличи­ваться и в определенный момент, преодолев массу клапана, за­кроет его. Вследствие внезапного прекращения течения воды в питательной трубе произойдет гидравлический удар, который вы­зовет резкое увеличение давления.

Под действием возросшего дав­ления откроется нагнетательный клапан 4 и вода устремится в воз­душный колпак 5 и нагнетатель­ную трубу 6. В следующий момент произойдет падение давления в пи­тательной трубе, благодаря чему ударный клапан 3 под действием атмосферного давления и собствен­ной массы (или силы пружины) откроется.

Одновременно нагнетательный клапан 4 под давлением воды в воздушном колпаке закроется и таран автоматически придет в первоначальное положение, после чего процесс действия гидравлического тарана возобно­вится.

КПД гидравлического тарана определяется зависимостью

 

 

.                                                (334)

 

где - расход воды, подаваемой тараном в водонапорную башню, ;
  - геометрическая высота подъема жидкости, ;
  - расход жидкости, протекающей по питательной трубе, ;
  - высота падения жидкости, .

 

Высоту подъема воды обычно принимают в пределах от  до и реже до . Длину питательной трубы принимают в пределах . Диаметр нагнетательной трубы должен быть вдвое меньше диаметра питательной трубы.

Гидравлический таран надежно работает в любое время су­ток зимой и летом и не требует постоянного обслуживания. Не­достатком в работе гидравлического тарана является выброс неиспользованной воды через клапан 3 (см. рис. 92) в количе­стве от , и только  расхода  подается в бак 7. Гидравлические тараны типа ТГ-1 и УНЖК-100 выпускаются серийно. Гидравлический таран ТГ-1 способен подавать жидкость на высоту , а УНЖК-100 создает напор до при подводящей трубе .

 

 

3.9.2. Водоструйный насос (эжектор)

Струйный насос – насос трения, в котором одна жидкая среда перемещается внешним потоком другой жидкой среды.

Струйные насосы для нагнетания называются инжекторами, для отсасывания - эжекторами, для подъема – гидроэлеваторами.

Действие струйного насоса основано на непосредственной передаче кинетической энергии одним потоком (рабочим) другому, имеющему меньшую кинетическую энергию (перекачиваемому - эжектируемому). Рабочая и перекачиваемая (эжектируемая) жидкости могут быть одинаковыми и различными. Струйные насосы, в которых рабочей и эжектируемой жидкостями является вода, называются водоструйными.

Водоструйный насос можно легко получить на основе трубы Вентури, организовав поток жидкости по оси трубы с высокой скоростью. На рис. 33 приведена принципиальная схема водоструйного насоса (эжектора).

В водоструйном насосе рабочий поток с расходом  под большим давлением   по трубопроводу 1 с соплом 2 на конце поступает в камеру всасывания 3, сообщенной всасывающим трубопроводом 7 с расходным резервуаром 8. Струя воды, вылетая из сопла 2 с большой скоростью, создает разряжение  в камере всасывания 3 и соответственно во всасывающем трубопроводе 7. За счет вакуума из расходного резервуара 8 по всасывающему трубопроводу 7 подсасывается вода в количестве  (расход эжектируемой – перекачиваемой жидкости).

 

 

Рис. 93. Схема водоструйного насоса (эжектора):

1 – трубопровод рабочей жидкости; 2 – сопло; 3 – камера всасывания;

4 – камера смешения; 5 – диффузор; 6 – напорный трубопровод

суммарного потока; 7 - всасывающий трубопровод; 8 – резервуар

расходный;  - расход рабочего потока жидкости;  - расход

эжектируемой (перекачиваемой) жидкости;  - расход общего потока жидкости.

 

Из камеры смешения 4 общий поток с расходом  направляется в диффузор 5, где скорость падает, и создается давление, необходимое для движения жидкости по напорному трубопроводу 6.

Струйные наосы обладают рядом существенных достоинств: простота конструкции, надежность работы, легкость изготовления, небольшие габариты и стоимость, простота эксплуатации.

Недостатком водоструйных насосов является низкий КПД () и относительно большой расход рабочей жидкости , (в раза превышающий расход эжектируемой жидкости).

КПД водоструйного насоса можно определить с помощью зависимости

 

 

.                                     (335)

 

где - расход воды во всасывающей трубе (подача водоструйного насоса), ;
  - расход воды, подаваемой к водоструйному насосу по напорному трубопроводу (рабочий расход), ;
  - полная высота подъема перекачиваемой жидкости, ;
  - напор, подводимый к насосу рабочей жидкости, .

 

Среднее значение КПД водоструйных насосов колеблется в пределах .

Напор, развиваемый водоструйным насосом, зависит от ско­рости истечения воды из сопла, которая обычно составляет . Для достижения такой скорости вода должна подво­диться к насосу под напором . Скорость во всасываю­щем и напорном трубопроводах равна .

Отношение площади сечений горловины к площади сечения сопла составляет обычно , а отношение сечения площадей всасывающей трубы и сопла принимается равным .

Карбюратор

Карбюратором называется устройство, предназначенное для приготовления горючей смеси топлива в двигателях внутреннего сгорания путем подсоса топлива и перемешивания его с воздухом.

Схема простейшего карбюратора приведена на рис. 34. Основными элементами такого карбюратора являются: воздушный канал 1 с диффузором 9, смесительной камерой 8 и дроссельной заслонкой 7; поплавковая камера 2 с поплавком 4 и игольчатым клапаном 3; топливоподводящий трубопровод 6 с жиклером 5 и распылителем 10.

Поплавковая камера с поплавком и игольчатым клапаном обеспечивает постоянный уровень топлива на входе в жиклер, который дозирует количество топлива, поступающего через распылитель в воздушный канал карбюратора. Дроссельная заслонка регулирует количество горючей смеси, поступающей из карбюратора во впускной трубопровод и цилиндры двигателя. В воздушном канале топливо распыливается и перемешивается с воздухом.

Движение воздуха, а затем и горючей смеси через карбюратор и впускной трубопровод, осуществляется за счет перепада давлений между окружающей средой и цилиндрами двигателя, в которых поршни в процессе впуска совершают насосные хода. Наибольшее значение разряжение достигает в диффузоре ( до ), а в смесительной камере оно в  раза меньше.

 

Рис. 94. Принципиальная схема простейшего карбюратора:

1 – воздушный канал; 2 – поплавковая камера; 3 – игольчатый канал;

4 – поплавок; 5 – жиклер топливный; 6 – топливоподводящий

трубопровод; 7 – дроссельная заслонка; 8 – смесительная камера;

9 – диффузор; 10 - распылитель топлива.

 

Движение топлива из поплавковой камеры и его истечение через распылитель осуществляется за счет перепада давлений в пространстве над топливом и в диффузоре. Для предотвращения вытекания топлива при неработающем двигателе и при наклонном положении карбюратора устье распылителя располагается на  выше уровня топлива в поплавковой камере. Чтобы исключить влияние загрязнения воздушного фильтра двигателя на иссечение топлива через распылитель, пространство над топливом в поплавковой камере карбюратора соединяется с началом воздушного канала; такой карбюратор называется сбалансированным.

Распыливание топлива происходит из-за разности в скоростях движения воздуха и самого топлива. При разности в  наступает разрушение струи, при разности в  и более наступает полное распыливание.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow