Доказательство теоремы (3)

 

Допустим, что теорема неверна и группа  --- контрпример минимального порядка. Пусть  --- циклическая силовская -подгруппа в , а , где  --- силовская 2-подгруппа в ,  --- ее инвариантное дополнение в . В силу леммы (??) условие теоремы выполняется для , поэтому мы можем считать, что .

Пусть  --- минимальная инвариантная в  подгруппа. Тогда  неразрешима,  и по лемме (??) порядок  делится на . Силовская -подгруппа  циклическая, поэтому  --- простая группа. Теперь, если  --- другая инвариантная в  подгруппа, то силовская -подгруппа  пересекается с  не по единице. Из минимальности  следует, что  содержится в . Таким образом,  --- единственная минимальная инвариантная в  подгруппа. Так как централизатор  подгруппы  инвариантен в  и пересекается с  по единице, то и . Следовательно,  изоморфна подгруппе группы автоморфизмов группы .

Если  --- собственная в  подгруппа, то по индукции  изоморфна . Но тогда  изоморфна , противоречие.

Таким образом,  --- простая группа. В силу теоремы (??) подгруппа  неединична.

Введем следующие обозначения:  --- минимальная инвариантная в  подгруппа,  --- силовская подгруппа из , содержащая , . Так как  инвариантна в , то .

Допустим, что . Напомним, что  --- наибольшая инвариантная в группе -подгруппа. Так как  и , то и . Поэтому . Пусть . Покажем, что  для всех . Возьмем произвольный элемент , . Тогда , поэтому  для некоторого . Теперь . Так как  инвариантна в , то . По теореме Гольдшмидта получаем, что либо  абелева, либо  изоморфна  или . Если  абелева, то группа  разрешима, противоречие. Так как , то изоморфизм  с группами  и ) невозможен.

Таким образом, . Группа , и  не содержит подгрупп, инвариантных в . По лемме 1 из [??] группа  неразрешима. Значит,  бипримарна, и  делит порядок . По индукции  изоморфна  или .

Допустим, что  имеет четный порядок. Подгруппа  факторизуема, a  инвариантна в , значит, и . Если  содержит неединичную подгруппу, инвариантную в , то и  содержит подгруппу, инвариантную в , противоречие. По лемме 1 из [??] подгруппа  неединична, противоречие. Следовательно, порядок  нечетен.

Теперь силовская 2-подгруппа  из  изоморфна силовской 2-подгруппе из группы  или , т. е.  --- диэдральная группа порядка 8 или 16. Поэтому и изоморфна  или ,  нечетное. Но этот изоморфизм ввиду  невозможен. Теорема доказана.

Доказательство следствия теоремы. Пусть утверждение неверно и группа  --- контрпример минимального порядка. Фактор-группа  неразрешима и по теореме она изоморфна  или . Поэтому порядок -группы  равен 3 или 7. Значит, . Теперь, повторяя дословно второй и третий абзацы доказательства следствия теоремы, мы приходим к противоречию.



Заключение

 

Итак, в данной курсовой работе приводятся свойства конечных групп, являющихся произведением двух групп, одна из которых группа Шмидта, а вторая 2-разложимая, произведением бипримарной и 2-разложимой групп. Доказываются следующие теоремы:

Теорема. Пусть  и  --- подгруппы конечной группы  и пусть . Если подгруппы  и -разложимы для каждого , то  разрешима.

Теорема. Пусть  и  --- подгруппы конечной группы  и пусть . Предположим, что  и  --- -замкнуты для каждого . Если  и -разложимы и -разложимы, то  разрешима.

Теорема. Пусть  есть группа Шмидта,  --- 2-разложимая группа, порядки  и  взаимно просты. Если  и  --- конечная неразрешимая группа, то , ,  и  --- простое число  или  для некоторого простого .

Теорема. Пусть  --- группа Шмидта;  --- -разложимая группа, где . Если  и  --- простая группа, то ,  или  и  --- простое число.

Теорема. Пусть конечная группа  является произведением своих подгрупп  и  взаимно простых порядков, и пусть  --- бипримарная группа, а  --- 2-разложимая группа четного порядка. Предположим, что в  есть неединичная циклическая силовская подгруппа . Тогда, если  неразрешима, то  изоморфна  или .

Теорема. Пусть неразрешимая группа  является произведением бипримарной подгруппы  и примарной подгруппы . Тогда, если среди силовских подгрупп группы  есть циклическая, то  изоморфна одной из следующих групп:

1) ;

2) ;

3) ;

4) ;

5) ;

6) , где  --- силовская 3-подгруппа;

7) , порядок  равен , а .



Список литературы

 

[1] Huppert B., Endliche Gruppen. I, Berlin--Heidelberg --- N. Y., Springer--Verlag, 1967.

[2] Glauberman G., Factorizations in local subgroups of finite groups, Reg. Con. Ser. Math., № 33, (1977), 77.

[3] Сыскин С. А., Об одном вопросе Р. Бэра, Сиб. матем. ж. 20, № 3 (1979), 679-681.

[4] Монахов В. С., Произведение сверхразрешимой и циклической или примерной групп, Сб., Конечные группы (Тр. Гомельского семинара), Минск, "Наука и техника", 1978, 50-63

[5] Фомин А. Н., Одно замечание о факторизуемых группах, Алгебра и логика, 11, № 5 (1972), 608-611.

[6] В. Huppert, Math. Zeit., 64, 138, 1956.

[7] В. А. Ведерников, Матем. зам., 3, 201, 1968.

[8] И. П. Докторов, ДАН БССР, 13, 101, 1969.

[9] П. И. Трофимов, ДАН СССР, 167, 523, 1966.

[10] В. С. Монахов, ДАН БССР, 18, № 7, 584, 1974.

[11] С. А. Чунихин, Л. А. Шеметков, сб. Итоги науки. Алгебра. Топология. Геометрия. 1969, М., 7, 1971.

[12] О. Ю. Шмидт, Матем. сб., 31, 366, 1924.

[13] L. Redei, Publ. Math. Debrecen,4, 303, 1956.

[14] В. Д. Мазуров, С. А. Сыскин, Матем. заметки, 14, 217,1973.

[15] D. Gодdsсhmidt, Not. Amer. Math. Soc., 20, № 1, 1973.

[16] Я. Г. Бeркович, ДАН СССР, 171, 770, 1966.

[17] В. С. Монахов, ДАН БССР, 15, 877, 1971.

[18] Z. Jankо, J. Algebra, 3, 147. 1966.

[19] Н. Ward, Trans. Amer. Math. Soc., 121, 62, 1966.

[20] B. Huppert, Endliche Gruppen I, Berlin, 1967.

[21] D. Wales, Algebra, 20, 124, 1972.

[22] С. А. Чyнихин, Труды семинара по теории групп, М.-Л., 1938.

[23] С. А. Чунихин, Подгруппы конечных групп, Минск, 1964.

[24] В. Huppert, N. Itо, Math. Z., 61, 94, 1954.

[25] J. Walter, Annals Math., 89, 405, 1969.

[26] N. Ito, Acta scient. math., 15, 77, 1953.

[27] В. С. Монахов, Матем. зам., 16, 285, 1974.

[28] Монахов В. С., О произведении 2-разложимой группы и группы Шмидта, Докл. АН БССР, 18, № 10 (1974), 871-874.

[29] Конечные группы, Тр. Гомельского семинара, Минск, Наука и техника, 1975.

[30] Huppert В., Endliche Gruppen, Bd. I, Berlin, Springer- Verlag, 1967.

[31] Leon J., Wales D., Simple groups of order 2aZbpc with cyclic Sylow -groups, J. Algebra, 29 № 2 (1974), 246-254.

[32] Докторов И. П., Об одном классе факторизуемых групп, Докл. АН БССР, 13, № 2 (1969), 101-102.

[33] Goldschmidt D., 2-fusion in finite groups, Ann. Math., 99, № 1 (1974), 70-117.

[34] Монахов B.C., К двум теоремам Ведерникова, Докл. АН БССР, 15, № 10 (1971), 877-880.

[35] Gоrеnstein D., Walter J., The characterization of finite groups with dihedral Sylow 2-subgroups, J. Algebra, 2 (1965), 85-151, 218-270, 334-397.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: