Отличительные особенности кристаллических и аморфных тел

КРИСТАЛЛОГРАФИЯ

СИММЕТРИЯ

Лекция 1



Лекция 1

ОБЩИЕ СВЕДЕНИЯ О СТРОЕНИИ И СВОЙСТВАХ КРИСТАЛЛИЧЕСКИХ ТЕЛ

Содержание

 

1.1. Кристаллография как наука.

1.2. Виды твёрдых тел.

1.3. Отличительные особенности кристаллических и аморфных тел.

1.4. Особые свойства кристаллов.

1.5. Виды связей в кристаллах.

1.6. Силы взаимодействия частиц.

1.7. Кристаллическая решётка. Элементарная ячейка.

1.8. Индексы Миллера.

1.9. Рентгеноструктурный анализ.

 

КРИСТАЛЛОГРАФИЯ КАК НАУКА

 

Кристаллография – наука об атомно-молекулярном строении, симметрии, физических свойствах, образовании и росте кристаллов. Как самостоятельная наука существует с середины XVIII века. Сначала она развивалась как геометрическая кристаллография в тесной связи с минералогией, которая устанавливала закономерности огранки природных кристалликов, имеющих естественную форму правильных многогранников (Р. Гаюи). Затем появилась теория симметрии внешней формы кристаллов (А.В. Гадолини).

Геометрическая кри­сталлография определяет совокупность методов описания кристаллов и зако­номерности их огранки. В этой теории возникла гипотеза об упорядоченном трёхмерно-периодическом расположении частиц в кристалле с образованием кристаллической решётки (О. Браве, Е.С. Фёдоров, А. Шёнфлис).

Экспериментальными исследованиями дифракции рентгеновских лучей на кристаллах было подтверждено решёточное строение кристаллов и положено начало структурной кристаллографии(М. Лауэ). В качестве основных структурная кристаллография использует метод рентгеноструктурного анализа, электроно- и нейтронографии, а также методы оптической и электронной спек­троскопии. В результате всех исследований к настоящему времени определена структура более 105 химических веществ.

Предметом кристаллохимии является изучение законов взаимного расположения атомов и молекул в кристал­лах, их химических связей и плотнейших упаковок, а также явлений изо- и по­лиморфизма.

Кристаллооптика занимается вопросами прохождения света через прозрачные анизотропные кри­сталлы, сформулировала многие закономерности взаимного влияния симметрии и анизотропии физических свойств.

 

 

Кристаллофизика рассматривает в едином русле форму, симметрию и физические свойства кристаллов; занимается вопросами исследования механических, оптических, электрических, магнитных и других свойств кристаллов. В этой части кристаллография смыкается с физикой твёрдого тела.

В кристаллографии изучаются разнообразные дефекты построения идеальной кристаллической решётки: точечные, линейные (дислокации), поверхностные и объёмные. Многие из них появляются в результате роста кристалла или при внешнем воздействии на кристалл напряжением, облучением и т. д.

Для современной кристаллографии характерно дальнейшее изучение атомной и дефектной структур кристаллов, процессов их роста, поиск новых свойств и материалов. Основная задача кристаллографии как науки на сего­дняшний день – получение новых материалов с важными физическими свойст­вами. К решению этой задачи необходимо подходить комплексно, рассматривая атомную структуру, анизотропию свойств, взаимодействие кристаллов с окру­жающей средой в их взаимодействии.

В современной кристаллографии исследуются строение и свойства различ­ных агрегатов из микрокристалликов (поликристаллов, текстур, керамик), а также вещества с атомной упорядоченностью, близкой к кристаллической (жидкокристаллические вещества, полимерные и композиционные материалы).

Симметричные и структурные закономерности, изучаемые в кристаллографии, используются при рассмотрении общих закономерностей строения и свойств аморфных тел и жидкостей, полимеров, квазикристаллов, макромо­лекул, надмолекулярных аморфно-кристаллических, а также биологических структур. Поэтому современная кристаллография представляет собой обобщён­ную кристаллографию, математический аппарат которой основан на дискрет­ной геометрии, теории групп, тензорном исчислении и теории преобразований Фурье.

 

ВИДЫ ТВЕРДЫХ ТЕЛ

 

Твёрдое тело состоит из большого числа частиц. Этими частицами могут быть атомы, атомные остатки, ионы, молекулы, макромолекулы. Концентрация частиц в твёрдых телах высока: (1026 – 1029) м-3. Расстояния между частицами составляют несколько нанометров.

Структуру твёрдых тел исследуют дифракционными методами, основан­ными на дифракции рентгеновских лучей, электронов, нейтронов, используя при этом стандартные установки: рентгеновский дифрактометр, электронный микроскоп, ионный проектор и др. Физика твёрдого тела и кристаллография имеют прямое отношение к нанотехнологиям (рис. 1.1). Нанотехнологии разрабатываются на эффектах, возникающих на уровне атомных размеров.

Свойства твёрдых тел объясняются многими факторами и зависят от химического состава вещества, типа частиц, их внутреннего расположения, типа химической связи между частицами.

 

Свойства кристаллов широко применяют­ся в оптике, акустике, радиоэлектронике, металловедении, металлургии, химии, медицине. Твёрдые тела встречаются в природе в виде кристаллических и аморфных тел, а также полимеров. В физике к твёрдым телам относят только кристаллические тела.

 

                           

 

 

Рис. 1.1. Электронная микрофотография структуры алмаза вдоль направления [110]

Кристаллы – твёрдые тела, обладающие трёхмерной периодической атомной структурой и имеющие при равновесных условиях образования естественную форму правильных симметричных многогранников. Атомная струк­тура кристалла описывается как совокупность повторяющихся в пространстве одинаковых элементарных ячеек, имеющих форму параллелепипеда. Кристал­лы, выросшие в равновесных условиях, имеют форму правильных многогран­ников той или иной симметрии. Грани кристалла плоские, а рёбра между гра­нями - прямолинейные. Выросшие в неравновесных условиях кристаллы не имеют правильной огранки, но сохраняют кристаллическую структуру и все присущие данной структуре свойства. Неравновесные условия кристаллизации приводят к отклонениям только формы от правильного многогранника – к ок­руглости граней и рёбер. Примерами кристаллических тел являются горный хрусталь, поваренная соль, драгоценные камни.

В кристаллах частицы расположены правильными, симметричными, периодически повторяющимися рядами, сетками, решётками. Кристаллы вырас­тают в форме многогранников (рис. 1.2). Способность кристалла приобретать конкретную форму – это проявление его физических свойств, определяющихся его структурой, симметрией и химическими связями между его частицами.

 

 

Рис. 1.2. Внешний вид кристаллических тел

 

Кристаллические тела встречаются в природе в виде моно- и поликристаллов. Монокристаллы (большие одиночные кристаллы) получают при созда­нии специальных условий кристаллизации (рис. 1.3).

 

      

 

 

Рис. 1.3.Монокристаллы кремния

Монокристалл состоит из блоков мозаики, размер которых в монокристалле составляет (10–6–10–8) м. Так как кристаллическая решетка в соприка­сающихся блоках имеет различную ориентацию, то возникает переходный слой, в котором решетка постепенно переходит от одной ориентации, свойст­венной одному блоку, к другой ориентации, свойственной другому блоку. По­этому решетка в этом слое искажена по сравнению с решеткой идеального кри­сталла. Поликристалл состоит из беспорядочно ориентированных кристалли­ков (кристаллитов) малых размеров (рис. 1.2, справа). Размер кристаллитов по­рядка 10–4 м.

Аморфные тела – вещества, в атомном строении которых нет порядка: частицы расположены беспорядочно, независимо друг от друга (воск, пластилин). Отличительной особенностью аморфных тел является изотропность всех физических и механических свойств.

Полимеры состоят из многочисленных звеньев одинакового химического состава – макромолекул. Например, полимерным материалом является политетрафторэтилен, химическая формула которого (СF2)n, где n = 13.

 

К особым видам твёрдых тел относятся жидкокристаллические тела, нашедшие широкое применение в телевидении и сотовой связи, и закристаллизованные жидкости, которые обладают особыми свойствами.

 

 

ОТЛИЧИТЕЛЬНЫЕ ОСОБЕННОСТИ КРИСТАЛЛИЧЕСКИХ И АМОРФНЫХ ТЕЛ

Рассмотрим некоторые свойства твёрдых тел, которые характеризуют их как кристаллические или аморфные тела.

1. Кристаллы имеют упорядоченное расположение частиц на сколь угодно больших расстояниях. Частицы расположены в узлах кристаллической решётки. Аморфные тела имеют упорядоченное расположение частиц на небольших расстояниях (в так называемых группах) (рис.1. 4). Расположение частиц в веществе характеризуется наличием дальнего и ближнего порядков.

 

 

           

 

Рис. 1.4. Вещество H2O в двух агрегатных состояниях: воды (1) и льда (2)

 

2. Дальний порядокупорядоченное расположение частиц на сколь угодно больших расстояниях от рассматриваемой частицы.

– характеризуется коэффициентом α.

Ближний порядокупорядоченное расположение частиц на малых расстояниях от рассматриваемой частицы.

– характеризуется коэффициентом β.

Агрегатное состояние вещества коэффициент дальнего порядка α коэффициент ближнего порядка β
кристаллические тела 1 1
аморфные тела < 1 > 0
жидкости 0 1
газы 0 0

 

3. Кристаллические и аморфные тела различаются ходом температурной зависимости температуры плавления.

 

4. Для кристаллов характерно наличие анизотропии. Анизотропия – зависимость свойств вещества от направления в кристалле. Например, слюда по-разному раз­ламывается в различных направлениях. Анизотропией диэлектрической прони­цаемости объясняется существование в кристаллах турмалина двойного луче­преломления (рис. 1.5).

 

 

Рис. 1.5. Двойное лучепреломление в кристалле турмалина

 

   Обладают анизотропией очень многие физические и механичес­кие свойства кристаллических тел, например: теплопроводность, электропроводность, скорость света, двойное лучепреломление. Аморфные тела изотропны, у них свойства одинаковы по всем направлениям в веществе. Примером являет­ся пластилин, который легко сжимается в любых направлениях.




Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: