Список использованных источников

[1] «Информационные системы менеджмента» И.И. Бажин

[2] Учебник «Маркетинг» под ред. Н.Д. Эриашвили, 2001г. 2-е издание

[3] www.ITSMonline.ru

[4] www.Ivelum.ru

[5] www.PMExpert.ru

 

Приложение.

Исследование 1.

Даны две группы студентов, обучающихся на одной специальности. В течение первого семестра у обеих групп преподавалась дисциплина Методы СЭП (методы социально-экономического прогнозирования), в рамках которой студенты изучали на примерах программу «Статистика». В конце семестра были проведены экзамены. Результаты представлены в таблице (1).

Таблица 1

 

 

В ходе изучения дисциплины «Методы СЭП» студенты работали с программой Статистика. Во втором семестре для рассматриваемых групп решили провести дополнительные курсы по изучение программы Статистика, чтобы улучшить знания студентов и проверить, в какой из групп студенты изучат данную программу лучше.

Для того чтобы проводить курсы и затем сравнивать дальнейшие результаты студентов, следует провести исследование, которое покажет, что на данный момент начала проведения курсов группы 47 и 48 равны по успеваемости.

Проведем статистическое исследование на нормальность распределения.

Нормальное (гауссовское) распределение.

Нормальное (гауссовское) распределение занимает центральное место в теории и практике вероятностно-статистических исследований. В качестве непрерывной аппроксимации к биномиальному распределению его впервые рассматривал А.Муавр в 1733 г. Через некоторое время нормальное распределение снова открыли и изучили К.Гаусс (1809 г.) и П.Лаплас, которые пришли к нормальной функции в связи с работой по теории ошибок наблюдений.

 

Непрерывная случайная величина Х называется распределенной по нормальному закону, если ее плотность распределения равна

 

                          

 

где μ совпадает с математическим ожиданием величины Х: μ =М(Х), параметр s совпадает со средним квадратическим отклонением величины Х: s =s(Х). График функции нормального распределения, как видно из рисунка, имеет вид куполообразной кривой, называемой Гауссовой, точка максимума имеет координаты (а; 1/σ√2π). Значит, эта ордината убывает с возрастанием значения s (кривая «сжимается» к оси Ох) и возрастает с убыванием значения s (кривая «растягивается» в положительном направлении оси Оу). Изменение значений параметра μ (при неизменном значении s) не влияет на форму кривой, а лишь перемещает кривую вдоль оси Ох.

Нормальное распределение с параметрами μ=0 и s=1 называется нормированным. Функция распределения СВ в этом случае будет иметь вид:

 

 .                                                             

(1)

 

Проверим оценки студентов по предмету «Методы СЭП» на нормальность распределения, используя Хи критерий.

Критерий Пирсона, или критерий χ2 — наиболее часто употребляемый критерий для проверки гипотезы о законе распределения. Во многих практических задачах точный закон распределения неизвестен, то есть является гипотезой, которая требует статистической проверки.

Обозначим через X исследуемую случайную величину. Пусть требуется проверить гипотезу H0 о том, что эта случайная величина подчиняется закону распределения F(x). Для проверки гипотезы произведём выборку, состоящую из n независимых наблюдений над случайной величиной X. По выборке можно построить эмпирическое распределение F * (x) исследуемой случайной величины. Сравнение эмпирического F * (x) и теоретического распределений производится с помощью специально подобранной случайной величины — критерия согласия. Одним из таких критериев и является критерий Пирсона.

Для проверки критерия вводится статистика:

 

 (2)

 

где — предполагаемая вероятность попадания в i-й интервал,  — соответствующее эмпирическое значение, ni — число элементов выборки из i-го интервала.

Эта величина в свою очередь является случайной (в силу случайности X) и должна подчиняться распределению χ2.

Таблица (2)

 

Таблица (3)

 

Распределение не подчиняется нормальному закону.

Проведя дальнейшую подгонку распределений, можно будет заметить, что для обеих выборок оно будет биноминальным, т.е. приближенным к нормальному.

Рассмотрим средние в двух выборках «Методы СЭП 48» и «Методы СЭП 47». Предположим, что они равны в двух независимых выборках. Для исследования воспользуемся t-критерием Стьюдента для независимых выборок.

Двухвыборочный t-критерий для независимых выборок

 

В случае с незначительно отличающимся размером выборки применяется упрощённая формула приближенных расчётов:

 (3)

 

В случае, если размер выборки отличается значительно, применяется более сложная и точная формула:

 

 (4)

 

 

Где M1 M2- средние арифметические,σ1 σ2- стандартные отклонения, а N1 N2 – размеры выборок.

Количество степеней свободы рассчитывается как 

 (5)

Таблица (4)

Из таблицы видно, что гипотеза о равенстве средних имеет место, при этом так же верна гипотеза о равенстве дисперсий.

Итак, в ходе проведенного исследования, выяснилось, что курсы по улучшению навыков работы с программой Статистика могут быть проведены в обеих группах, так как средняя успеваемость студентов равна.

Исследование 2.

В течение второго семестра студенты групп 47 и 48 посещали занятия и улучшали свои познания в области статистического анализа с помощью программы Статистика. В конце курсов они должны были предоставить индивидуальные отчеты с различными анализами файлов статистических данных. Помимо этого студенты должны были уметь объяснять суть проведенных анализов. Были выставлены оценки, которые занесены в вышеприведенную таблицу (1).

Выставленные оценки в двух группах так же проверим на нормальность распределения.

Таблица (5)

 

Таблица (6)

 

Таблицы (5) и (6) ясно дают понять, что полученные оценки также не имеют нормального распределения.

Следующий анализ – анализ средних в двух выборках с помощью t-критерия Стьюдента.

Таблица (7)

Средние приблизительно равны, так как уровень значимость р-критерия равен 0,615. Так же верна гипотеза о равенстве дисперсий.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: