Молекулярно- біологічні механізми дії хімічних канцерогенів

 

 

Згідно з сучасними уявленнями, процес хімічного канцерогенезу (якщо не враховувати зміни в організмі від початку контакту з канцерогеном до клінічного виявлення пухлини) складається з декількох стадій. Першою стадією є циркуляція канцерогену в організмі та ланцюжок його метаболічних перетворень. За останній час доведено, що практично усі канцерогени, перед тим як викликати малігнізацію клітин, підлягають в організмі різноманітним перетворенням. Тому сформувалось поняття про канцерогени, що надходять в організм, як “проканцерогени”, проміжні метаболіти стали називати “проксимальними канцерогенами”, а кінцеві метаболіти- “кінцевими канцерогенами”. Іноді білтрансфармація канцерогенів потребує участі ферментних систем (наприклад, для декотрих алкілуючих сполук), але у більшості випадків ці перетворення відбуваються під дією ферментів, в першу чергу неспецифічних багатоцільових оксидах. Основні метаболюючі системи зосереджені у мікросомах клітин, найбільш сильні- у мікросомах печінки, котрі частіше всього використовують для вивчення метаболізму канцерогенів в дослідах in vitro [Рубенчик Б.Л., 1977]. Відомо, що ключовим ферментом мікросом є цитохром Р-450. Однак відомо, що біотрансформація канцерогенів відбувається і у ядерній оболонці. Для кожної групи канцерогенів виявлені свої шляхи метаболізму. Це, як правило, ланцюги перетворень, що ідуть паралельно: шлях знешкодження канцерогена та шлях його метаболічної активації з утворенням канцерогенних метаболітів, що викликають малігнізацію. Встановлено, що протягом метаболічних перетворень, усі канцерогени набувають декотрих загальних властивостей; вони стають електрофільними сполуками, що можуть реагувати з нуклеофільними мішенями клітин, тобто з біополімерами.

 

Декотрі можливі шляхи метаболічної активації канцерогенів [19].


Так, вважають, що найбільш сильним канцерогенним метаболітом бенз(а)пірена є його 7,8-діол-9,10-епоксид [Slaga T., Bracken W.,1977]. Частина дослідників, однак, вважають, що активація ПАВ відбувається за вільнорадикальним механізмом. Показано, що вільнорадикальні метаболіти також є канцерогенними [Cavalieri E. Et al.,1977]. Шляхом знешкодження ПАВ є, очевидно, утворення фенолів, більшість котрих не канцерогенна.

З групи ароматичних амінів найбільш вивчений метаболізм 2-ацетилфлуорена (ААФ). Першою та найбільш важливою ланкою його активації є N-гідроксилювання. Подальшим шляхом активації вслід за N-гідроксилюванням є естерифікація ААФ з утворенням сірчанокислих ефірів [Miller J., 1970]. Шляхом знешкодження ААФ є С-гідроксилювання.

Вважають, що N-гідроксилювання є шляхом активації і інших ароматичних амінів (похідних нафталіну та амінодифенілу), а також аміноазосполук. Естерифіковані похідні цих сполук значно активніше зв’язуються з білками та нуклеїновими кислотами [Miller J., Miller E.,1969]. Ряд ароматичних амінів як відомо викликає пухлини сечового пухиря. Припускається, що індукція цих пухлин пов’язана з тим, що канцерогенні метаболіти ароматичних амінів у печінці утворюють неактивні кон‘югати з глюкуроновою кислотою, які при виведенні з сечею у сечовому пухирі розкладаються під дією b-глюкуронідази з вивільненням активних метаболітів, що впливають на епітелій.

Дослідження НС (нітрозосполук) показали, що у багатьох речовин цієї групи головний шлях метаболізму- гідроксилювання по a-С-вуглецевому атому з наступним деалкілуванням та утворенням діазоалканів або інших алкілдіазоніїв. Останні високореактивні та розпадаються до газоподібного азоту та відповідного алкілуючого катіону, що є, вірогідніше усього, кінцевим канцерогеном [Durkey H. et al., 1967]. Можливе також гідроксилювання в інших положеннях, наприклад по b-С-атому (так зване b-окислення) або кінцевому атому (w-окислення). Ряд b-окислених метаболітів є сильними канцерогенами [Okada H., Hashimoto Y., 1974]. Частина НС (нітрозаміди) активуються без участі ферментних систем, викликаючи пухлини на місці аплікації (метилнітрозосечовина).

При індукції пухлин декотрими НС також приймає участь b-глюкуронідаза.

За останні роки вивчений метаболізм і ряду інших канцерогенів (афлатоксину В1, сафролу, вінілхлориду та ін.) і вказано, що основним шляхом активації є ферментативне окислення. Так, канцерогенним метаболітом вінілхлориду є хлоретиленоксид.

Слід відмітити, що для кожного канцерогену може бути не один, а декілька шляхів метаболічної активації. При цьому канцерогенну активність може мати не лише кінцевий канцерогенний метаболіт, але й ряд проміжних. Знешкодженню при цьому може підлягати не лише висхідний канцероген, але й будь-який з проміжних метаболітів.

Знання метаболізму дає можливість попередньо оцінити сполуки, що 2включають у себе радикали канцерогенів. Так, при виробничому контакті людини з прямими фарбниками, що синтезовані з бензидину та дианізидину, у сечі робочих були виявлені висхідні канцерогени. Це свідчило про розщеплення прямих фарбників у організмі та про їх можливу канцерогенну небезпеку.

Іншим важливим напрямком є активний вплив на метаболізм канцерогенів для попередження утворення активного метаболіту та (або) прискорення знешкодження канцерогенів. Цей новий напрямок отримав назву “антиканцерогенезу”. Антиканцерогенний ефект виявлено у експериментах на різноманітних моделях хімічного канцерогенеза при застосуванні активаторів та інгібіторів мікросомальних ферментів та антиоксидантів, особливо селену. Важливе місце серед цих речовин можуть зайняти і інгібітори b-глюкуронідази, що перешкоджають розпаду глюкуронідів метаболітів та вивільнення канцерогенних сполук. Важливим напрямком робот по канцерогенезу є дослідження по застосуванню речовин, що затримують ендогенний синтез. Ряд таких речовин, зокрема вітамін С, успішно випробовуваний на тваринах.

Другою стадією канцерогенезу, що слідує за метаболізмом канцерогенів, є зв’язування метаболітів з біологічним субстратом клітин-мішеней. Канцероген, при надходженні у клітину, зв’язується з усіма її компонентами, починаючи з клітинної мембрани та закінчуючи органелами цитоплазми та ядром. Тому вкрай важливо виявити специфіку у такій взаємодії, знайти той ключовий субстрат, зв’язування якого з канцерогеном і буде причиною малігнізації.

Після відкриття ролі нуклеїнових кислот у передачі спадкової інформації найбільшу увагу стали приділяти зв’язування канцерогенів з цими компонентами клітини, особливо з ДНК. Віднайдено високий ступінь кореляції між канцерогенністю різних сполук та здатністю до зв’язування з ДНК [Huberman E., Sach L., 1977]. Дослідження на молекулярному рівні показали, що канцерогени реагують з основами нуклеїнових кислот, і над усе з гуаніном, що виявляється у метилюванні гуаніну. В результаті цих порушень пара основ гуанін-цитозин заміщується на аденін- тімін. Такі грубі пошкодження молекули ДНК, що стосуються вже обох ниток і тому унеможливлюють репарацію, призводять до мутацій, тобто порушення генетичного коду та виходу клітини з-під контролю гомеостатичних систем організму, що завершується її малігнізацією.

Поряд з ДНК декотрі канцерогени можуть також алкілувати транспортні РНК, що може призвести до збочення трансляції мРНК та порушення синтезу білків з наступною малігнізацією клітин. Характерним для чутливих до канцерогенезу тканин стало уповільнення відновлення викликаних канцерогеном пошкоджень ДНК, що призводило до довгострокової персистенції алкілованих основ, що могло вести до порушення кодування. Найбільш доведена така персистенція для О6-метилгуаніну [Ліхачьов А.Я., 1987]. Однак, повної кореляції між цією персистенцією та канцерогенним ефектом різноманітних бластомогенних агентів встановити не вдалося. Це свідчить про те, що за малінігнізацію можуть відповідати й інші, ще не відомі фактори.

Генетичний фонд клітини, не дивлячись на його тендітність, захищений потужним ферментатавним апаратом, що забезпечує репарацію (відновлення) ДНК. За допомогою ендо- та екзонуклеаз, лужних фосфатаз та ДНК-полімераз клітинам вдається “вирізати” змінені нуклеотиди та за рахунок відповідних комплементарних ділянок другої нитки ДНК (якщо вона не пошкоджена) відновити висхідну генетично запрограмовану нуклеотидну послідовність пошкодженої нитки.

Експериментальні дані свідчать про те, що практично усі відомі канцерогени індукують у клітині репаративний синтез ДНК [Віленчик М.М.,1977]. Інтенсивність репарації корелює з канцерогенним потенціалом хімічної сполуки. Значення для канцерогенезу пошкодження генетичного апарату клітини та порушення репаративного синтезу ДНК є досить солідною підставою для визнання мутаційної концепції раку. Додатковою аргументацією можуть також служити дані про те, що майже усі канцерогени мають мутагенну активність та що вона характерна для усіх без виключення електрофільних канцерогенних метаболітів. Слід також відмітити, що у ряду канцерогенів, що не мають мутагенних властивостей, є такі важливі сполуки, як гормони, декотрі метали, мінерали (азбест), пластмаси і т.ін. Очевидно, для цих сполук ведучим є не індукція мутацій, а відбір вже існуючих мутованих клонів, порушення систем регуляції гомеостазу, створення умов для депонування ендогенних бластомогенів і т.ін. Також існує думка, що результатом взаємодії канцерогенів з клітиною є не мутації, а епігенетичні зміни [Оленів Ю.М.,1967], які також можуть призводити до успадкування змінених властивостей [Chu E. et al.,1977]. У епігеномному механізмі велика увага приділяється взаємодії канцерогенів з РНК, білками та мембранами клітин [Шапот В.С.,1975].



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: